Advertisement
edges meaning in maths: Discrete Mathematics Oscar Levin, 2016-08-16 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the introduction to proof course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions. |
edges meaning in maths: Introduction To Graph Theory: H3 Mathematics Khee-meng Koh, Fengming Dong, Eng Guan Tay, 2007-03-15 Graph theory is an area in discrete mathematics which studies configurations (called graphs) involving a set of vertices interconnected by edges. This book is intended as a general introduction to graph theory and, in particular, as a resource book for junior college students and teachers reading and teaching the subject at H3 Level in the new Singapore mathematics curriculum for junior college.The book builds on the verity that graph theory at this level is a subject that lends itself well to the development of mathematical reasoning and proof. |
edges meaning in maths: Abstract Regular Polytopes Peter McMullen, Egon Schulte, 2002-12-12 Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory. |
edges meaning in maths: Social Networks Jeroen Bruggeman, 2013-05-13 Social Networks: An Introduction is the first textbook that combines new with still-valuable older methods and theories. Designed to be a core text for graduate (and some undergraduate) courses in a variety of disciplines it is well-suited for everybody who makes a first encounter with the field of social networks, both academics and practitioners. This book includes reviews, study questions and text boxes as well as using innovative pedagogy to explain mathematical models and concepts. Examples ranging from anthropology to organizational sociology and business studies ensure wide applicability. An easy to use software tool, free of charge and open source, is appended on the supporting website that enables readers to depict and analyze networks of their interest. It is essential reading for students in sociology, anthropology, and business studies and can be used as secondary material for courses in economics and political science. |
edges meaning in maths: Discrete Differential Geometry Alexander I. Bobenko, Yuri B. Suris, 2023-09-14 An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful. |
edges meaning in maths: Euler's Gem David S. Richeson, 2019-07-23 How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author. |
edges meaning in maths: Discrete and Computational Geometry Satyan L. Devadoss, Joseph O'Rourke, 2011-04-11 An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only) |
edges meaning in maths: Graphs and Matrices Ravindra B. Bapat, 2014-09-19 This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering. |
edges meaning in maths: Euclid's Elements Euclid, Dana Densmore, 2002 The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary --from book jacket. |
edges meaning in maths: Thirty-three Miniatures Jiří Matoušek, 2010 This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53) |
edges meaning in maths: Energy Makes Things Happen Kimberly Brubaker Bradley, 2002-12-24 Did you know that energy comes from the food you eat? From the sun and wind? From fuel and heat? You get energy every time you eat. You transfer energy to other things every time you play baseball. In this book, you can find out all the ways you and everyone on earth need energy to make things happen. |
edges meaning in maths: Holy Bible (NIV) Various Authors,, 2008-09-02 The NIV is the world's best-selling modern translation, with over 150 million copies in print since its first full publication in 1978. This highly accurate and smooth-reading version of the Bible in modern English has the largest library of printed and electronic support material of any modern translation. |
edges meaning in maths: Graph Theory (on Demand Printing Of 02787) Frank Harary, 2018-03-05 An effort has been made to present the various topics in the theory of graphs in a logical order, to indicate the historical background, and to clarify the exposition by including figures to illustrate concepts and results. In addition, there are three appendices which provide diagrams of graphs, directed graphs, and trees. The emphasis throughout is on theorems rather than algorithms or applications, which however are occaisionally mentioned. |
edges meaning in maths: Hypergraph Theory Alain Bretto, 2013-04-17 This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory. |
edges meaning in maths: The Knot Book Colin Conrad Adams, 2004 Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics. |
edges meaning in maths: Introduction to Graph Theory Richard J. Trudeau, 2013-04-15 Aimed at the mathematically traumatized, this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition. |
edges meaning in maths: MATHEMATICS FOR ELEMENTARY TEACHERS. (PRODUCT ID 23864410). MICHELLE. MANES, 2018 |
edges meaning in maths: Mathematics and Computation Avi Wigderson, 2019-10-29 From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography |
edges meaning in maths: Networks, Crowds, and Markets David Easley, Jon Kleinberg, 2010-07-19 Are all film stars linked to Kevin Bacon? Why do the stock markets rise and fall sharply on the strength of a vague rumour? How does gossip spread so quickly? Are we all related through six degrees of separation? There is a growing awareness of the complex networks that pervade modern society. We see them in the rapid growth of the internet, the ease of global communication, the swift spread of news and information, and in the way epidemics and financial crises develop with startling speed and intensity. This introductory book on the new science of networks takes an interdisciplinary approach, using economics, sociology, computing, information science and applied mathematics to address fundamental questions about the links that connect us, and the ways that our decisions can have consequences for others. |
edges meaning in maths: A Concise Course in Algebraic Topology J. P. May, 1999-09 Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field. |
edges meaning in maths: Lectures on Symplectic Geometry Ana Cannas da Silva, 2004-10-27 The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved. |
edges meaning in maths: Computational Topology Herbert Edelsbrunner, John L. Harer, 2022-01-31 Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department. |
edges meaning in maths: Algorithmic Graph Theory and Perfect Graphs Martin Charles Golumbic, 2014-05-10 Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists. |
edges meaning in maths: What's Math Got to Do with It? Jo Boaler, 2008 Discusses how to make mathematics for children enjoyable and why it is important for American children to succeed in mathematics and choose math-based career paths in the future. |
edges meaning in maths: Introduction to Probability Joseph K. Blitzstein, Jessica Hwang, 2014-07-24 Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment. |
edges meaning in maths: The Mathematics of Love Hannah Fry, 2015-02-03 In this must-have for anyone who wants to better understand their love life, a mathematician pulls back the curtain and reveals the hidden patterns—from dating sites to divorce, sex to marriage—behind the rituals of love. The roller coaster of romance is hard to quantify; defining how lovers might feel from a set of simple equations is impossible. But that doesn’t mean that mathematics isn’t a crucial tool for understanding love. Love, like most things in life, is full of patterns. And mathematics is ultimately the study of patterns—from predicting the weather to the fluctuations of the stock market, the movement of planets or the growth of cities. These patterns twist and turn and warp and evolve just as the rituals of love do. In The Mathematics of Love, Dr. Hannah Fry takes the reader on a fascinating journey through the patterns that define our love lives, applying mathematical formulas to the most common yet complex questions pertaining to love: What’s the chance of finding love? What’s the probability that it will last? How do online dating algorithms work, exactly? Can game theory help us decide who to approach in a bar? At what point in your dating life should you settle down? From evaluating the best strategies for online dating to defining the nebulous concept of beauty, Dr. Fry proves—with great insight, wit, and fun—that math is a surprisingly useful tool to negotiate the complicated, often baffling, sometimes infuriating, always interesting, mysteries of love. |
edges meaning in maths: Graph Theory and Complex Networks Maarten van Steen, 2010 This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks. |
edges meaning in maths: Introduction To Algorithms Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, 2001 An extensively revised edition of a mathematically rigorous yet accessible introduction to algorithms. |
edges meaning in maths: Discrete Mathematics for Computer Science Gary Haggard, John Schlipf, Sue Whitesides, 2006 Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career. |
edges meaning in maths: Notes on Introductory Combinatorics George Polya, Robert E. Tarjan, Donald R. Woods, 2013-11-27 In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations. |
edges meaning in maths: The Gospel According to Matthew , 1999 The publication of the King James version of the Bible, translated between 1603 and 1611, coincided with an extraordinary flowering of English literature and is universally acknowledged as the greatest influence on English-language literature in history. Now, world-class literary writers introduce the book of the King James Bible in a series of beautifully designed, small-format volumes. The introducers' passionate, provocative, and personal engagements with the spirituality and the language of the text make the Bible come alive as a stunning work of literature and remind us of its overwhelming contemporary relevance. |
edges meaning in maths: Combinatorial Optimization Eugene Lawler, 2012-10-16 Perceptive text examines shortest paths, network flows, bipartite and nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. Suitable for courses in combinatorial computing and concrete computational complexity. |
edges meaning in maths: Five Equations That Changed the World Dr. Michael Guillen, 2012-06-05 A Publishers Weekly best book of 1995! Dr. Michael Guillen, known to millions as the science editor of ABC's Good Morning America, tells the fascinating stories behind five mathematical equations. As a regular contributor to daytime's most popular morning news show and an instructor at Harvard University, Dr. Michael Guillen has earned the respect of millions as a clear and entertaining guide to the exhilarating world of science and mathematics. Now Dr. Guillen unravels the equations that have led to the inventions and events that characterize the modern world, one of which -- Albert Einstein's famous energy equation, E=mc2 -- enabled the creation of the nuclear bomb. Also revealed are the mathematical foundations for the moon landing, airplane travel, the electric generator -- and even life itself. Praised by Publishers Weekly as a wholly accessible, beautifully written exploration of the potent mathematical imagination, and named a Best Nonfiction Book of 1995, the stories behind The Five Equations That Changed the World, as told by Dr. Guillen, are not only chronicles of science, but also gripping dramas of jealousy, fame, war, and discovery. |
edges meaning in maths: ADVANCED GEOMETRY HARISH CHANDRA RAJPOOT, |
edges meaning in maths: Proofs from THE BOOK Martin Aigner, Günter M. Ziegler, 2013-06-29 According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such perfect proofs, those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics. |
edges meaning in maths: Maths Dictionary Steve Mills, Hilary Koll, 1999-01-13 A mathematics dictionary that develops the vocabulary required for Key Stage 2 by the National Numeracy Strategy and national tests in the United Kingdom. |
edges meaning in maths: The Geometry and Topology of Three-Manifolds William P. Thurston, 2023-06-16 William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study. |
edges meaning in maths: The Concise Oxford Dictionary of Mathematics Christopher Clapham, James Nicholson, 2014-05-22 Authoritative and reliable, this A-Z provides jargon-free definitions for even the most technical mathematical terms. With over 3,000 entries ranging from Achilles paradox to zero matrix, it covers all commonly encountered terms and concepts from pure and applied mathematics and statistics, for example, linear algebra, optimisation, nonlinear equations, and differential equations. In addition, there are entries on major mathematicians and on topics of more general interest, such as fractals, game theory, and chaos. Using graphs, diagrams, and charts to render definitions as comprehensible as possible, entries are clear and accessible. Almost 200 new entries have been added to this edition, including terms such as arrow paradox, nested set, and symbolic logic. Useful appendices follow the A-Z dictionary and include lists of Nobel Prize winners and Fields' medallists, Greek letters, formulae, and tables of inequalities, moments of inertia, Roman numerals, a geometry summary, additional trigonometric values of special angles, and many more. This edition contains recommended web links, which are accessible and kept up to date via the Dictionary of Mathematics companion website. Fully revised and updated in line with curriculum and degree requirements, this dictionary is indispensable for students and teachers of mathematics, and for anyone encountering mathematics in the workplace. |
edges meaning in maths: A First Course in Graph Theory Gary Chartrand, Ping Zhang, 2013-05-20 Written by two prominent figures in the field, this comprehensive text provides a remarkably student-friendly approach. Its sound yet accessible treatment emphasizes the history of graph theory and offers unique examples and lucid proofs. 2004 edition. |
edges meaning in maths: Graph Theory with Applications to Engineering and Computer Science Narsingh Deo, 1974 Because of its inherent simplicity, graph theory has a wide range of applications in engineering, and in physical sciences. It has of course uses in social sciences, in linguistics and in numerous other areas. In fact, a graph can be used to represent almost any physical situation involving discrete objects and the relationship among them. Now with the solutions to engineering and other problems becoming so complex leading to larger graphs, it is virtually difficult to analyze without the use of computers. This book is recommended in IIT Kharagpur, West Bengal for B.Tech Computer Science, NIT Arunachal Pradesh, NIT Nagaland, NIT Agartala, NIT Silchar, Gauhati University, Dibrugarh University, North Eastern Regional Institute of Management, Assam Engineering College, West Bengal Univerity of Technology (WBUT) for B.Tech, M.Tech Computer Science, University of Burdwan, West Bengal for B.Tech. Computer Science, Jadavpur University, West Bengal for M.Sc. Computer Science, Kalyani College of Engineering, West Bengal for B.Tech. Computer Science. Key Features: This book provides a rigorous yet informal treatment of graph theory with an emphasis on computational aspects of graph theory and graph-theoretic algorithms. Numerous applications to actual engineering problems are incorpo-rated with software design and optimization topics. |
California Based Electrical & Industrial Wholesale ...
We are a competitively-priced industrial electrical distributor supplier offering the highest quality products to the electrical wholesale market.
Vertices, Edges and Faces - Math is Fun
An edge is a line segment between faces. A face is a single flat surface. Let us look more closely at each of those: A vertex (plural: vertices) is a point where two or more line segments meet. It …
Edge (geometry) - Wikipedia
In graph theory, an edge is an abstract object connecting two graph vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment.
Vertices, Faces and Edges - Definition, Example - SplashLearn
Edges are line segments where two faces of a solid meet. Edges on a 2D shape connect two vertices. An edge is a line that joins the corners or edges of a given shape or surface. There is …
EDGE Definition & Meaning - Merriam-Webster
The meaning of EDGE is the cutting side of a blade. How to use edge in a sentence.
Faces, Edges and Vertices of 3D Shapes - Maths with Mum
Jul 16, 2019 · Edges are the lines where two faces on a 3D shape meet. Vertices are the corners of a 3D shape formed where two or more edges meet. For example, a cube has 6 faces, 12 …
What are Vertices? - BYJU'S
Vertices, Faces and Edges are the three properties that define any three-dimensional solid. A vertex is the corner of the shape whereas a face is a flat surface and an edge is a straight line …
California Based Electrical & Industrial Wholesale ...
We are a competitively-priced industrial electrical distributor supplier offering the highest quality products to the electrical wholesale market.
Vertices, Edges and Faces - Math is Fun
An edge is a line segment between faces. A face is a single flat surface. Let us look more closely at each of those: A vertex (plural: vertices) is a point where two or more line segments …
Edge (geometry) - Wikipedia
In graph theory, an edge is an abstract object connecting two graph vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment.
Vertices, Faces and Edges - Definition, Example - SplashLearn
Edges are line segments where two faces of a solid meet. Edges on a 2D shape connect two vertices. An edge is a line that joins the corners or edges of a given shape or surface. There is a …
EDGE Definition & Meaning - Merriam-Webster
The meaning of EDGE is the cutting side of a blade. How to use edge in a sentence.