Advertisement
electrical engineering math requirements: Mathematics for Electrical Engineering and Computing Mary P Attenborough, 2003-06-30 Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering |
electrical engineering math requirements: Topological Signal Processing Michael Robinson, 2014-01-07 Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations. Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students. |
electrical engineering math requirements: Introductory Electrical Engineering With Math Explained in Accessible Language Magno Urbano, 2019-10-23 Offers an understanding of the theoretical principles in electronic engineering, in clear and understandable terms Introductory Electrical Engineering With Math Explained in Accessible Language offers a text that explores the basic concepts and principles of electrical engineering. The author—a noted expert on the topic—explains the underlying mathematics involved in electrical engineering through the use of examples that help with an understanding of the theory. The text contains clear explanations of the mathematical theory that is needed to understand every topic presented, which will aid students in engineering courses who may lack the necessary basic math knowledge. Designed to breakdown complex math concepts into understandable terms, the book incorporates several math tricks and knowledge such as matrices determinant and multiplication. The author also explains how certain mathematical formulas are derived. In addition, the text includes tables of integrals and other tables to help, for example, find resistors’ and capacitors’ values. The author provides the accessible language, examples, and images that make the topic accessible and understandable. This important book: • Contains discussion of concepts that go from the basic to the complex, always using simplified language • Provides examples, diagrams, and illustrations that work to enhance explanations • Explains the mathematical knowledge that is crucial to understanding electrical concepts • Contains both solved exercises in-line with the explanations Written for students, electronic hobbyists and technicians, Introductory Electrical Engineering With Math Explained in Accessible Language is a much-needed text that is filled with the basics concepts of electrical engineering with the approachable math that aids in an understanding of the topic. |
electrical engineering math requirements: Essential Math Skills for Engineers Clayton R. Paul, 2011-09-20 Just the math skills you need to excel in the study or practice of engineering Good math skills are indispensable for all engineers regardless of their specialty, yet only a relatively small portion of the math that engineering students study in college mathematics courses is used on a frequent basis in the study or practice of engineering. That's why Essential Math Skills for Engineers focuses on only these few critically essential math skills that students need in order to advance in their engineering studies and excel in engineering practice. Essential Math Skills for Engineers features concise, easy-to-follow explanations that quickly bring readers up to speed on all the essential core math skills used in the daily study and practice of engineering. These fundamental and essential skills are logically grouped into categories that make them easy to learn while also promoting their long-term retention. Among the key areas covered are: Algebra, geometry, trigonometry, complex arithmetic, and differential and integral calculus Simultaneous, linear, algebraic equations Linear, constant-coefficient, ordinary differential equations Linear, constant-coefficient, difference equations Linear, constant-coefficient, partial differential equations Fourier series and Fourier transform Laplace transform Mathematics of vectors With the thorough understanding of essential math skills gained from this text, readers will have mastered a key component of the knowledge needed to become successful students of engineering. In addition, this text is highly recommended for practicing engineers who want to refresh their math skills in order to tackle problems in engineering with confidence. |
electrical engineering math requirements: Everything You Need to Ace Math in One Big Fat Notebook Workman Publishing, 2018-02-06 It’s the revolutionary math study guide just for middle school students from the brains behind Brain Quest. Everything You Need to Ace Math . . . covers everything to get a student over any math hump: fractions, decimals, and how to multiply and divide them; ratios, proportions, and percentages; geometry; statistics and probability; expressions and equations; and the coordinate plane and functions. The BIG FAT NOTEBOOK™ series is built on a simple and irresistible conceit—borrowing the notes from the smartest kid in class. There are five books in all, and each is the only book you need for each main subject taught in middle school: Math, Science, American History, English Language Arts, and World History. Inside the reader will find every subject’s key concepts, easily digested and summarized: Critical ideas highlighted in neon colors. Definitions explained. Doodles that illuminate tricky concepts in marker. Mnemonics for memorable shortcuts. And quizzes to recap it all. The BIG FAT NOTEBOOKS meet Common Core State Standards, Next Generation Science Standards, and state history standards, and are vetted by National and State Teacher of the Year Award–winning teachers. They make learning fun and are the perfect next step for every kid who grew up on Brain Quest. |
electrical engineering math requirements: Electrical Engineering: Know It All Clive Maxfield, John Bird, Tim Williams, Walt Kester, Dan Bensky, 2011-04-19 The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf! Electrical engineers need to master a wide area of topics to excel. The Electrical Engineering Know It All covers every angle including Real-World Signals and Systems, Electromagnetics, and Power systems. - A 360-degree view from our best-selling authors - Topics include digital, analog, and power electronics, and electric circuits - The ultimate hard-working desk reference; all the essential information, techniques and tricks of the trade in one volume |
electrical engineering math requirements: Power Systems Engineering and Mathematics U. G. Knight, 2017-05-17 Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineering systems in general, as well as some of the mathematical techniques that can be used. The next chapter relates these stages to power system design and operation, indicating the principal factors that determine a power system's viable and economic expansion and operation. The problem of choosing the standards for transmission and distribution plants is then considered, together with the choice of generation (plant mix) to meet the total requirement and the sequence of studies and decisions required in system operation. The remaining chapters deal with security assessment, scheduling of a generating plant, and the dispatching of generation. This book is intended for engineers and managers in the electricity supply industry, advanced students of electrical engineering, and workers in other industries with interest in resource allocation problems. |
electrical engineering math requirements: Essential Quantum Mechanics for Electrical Engineers Peter Deák, 2017-06-19 Der Autor dieses Lehrbuchs ist seit über 25 Jahren Dozent für Quantenmechanik in den Fachrichtungen Elektrotechnik und Informatik. Das Fachbuch ist wissenschaftlich fundiert und gut geschrieben, überzeugt durch eine ausgewogene Darstellung notwendiger formaler Mathematik und Text. Die Einführung fasst die Grundkonzepte der klassischen Physik zusammen und stellt einiger ihrer Versäumnisse heraus, die sich aus Phänomenen in Verbindung mit der Lichttechnik ergeben. Diese werden in den darauffolgenden drei Kapiteln ausführlich analysiert. Kapitel 5 geht über das Dualitätsprinzip hinaus und erläutert die Partikelkonzepte der Quantenmechanik sowie deren Folgen für die Elektrotechnik. In den Kapiteln 6 bis 8 werden die mathematischen Grundkonstruktionen beschrieben, mit denen sich der Zustand von Partikeln und deren Eigenschaften ableiten und vorhersagen lassen. Die beiden weiteren Kapitel zeigen zwei Beispiele hierfür mit Anwendungen von LEDs, Infrarotdetektoren, Quantenkaskadenlasern, Zener-Dioden und Flash-Speichern. In den letzten Kapiteln werden die Folgen der Quantenmechanik für die chemischen Eigenschaften von Atomen und anderen, aus vielen Elektronen bestehenden Systemen erörtert, abgerundet durch einen kurzen Einblick in die möglichen Hardwarekomponenten für die Quanteninformationsverarbeitung. Zu den vielfältigen didaktischen Merkmalen gehören auch Lernziele, Kapitelzusammenfassungen, Fragen zur Selbstüberprüfung sowie Problemlösungen. In den beiden Anhängen sind die notwendigen Kenntnisse der klassischen Physik und Mathematik zusammengefasst. |
electrical engineering math requirements: Complex Variables and the Laplace Transform for Engineers Wilbur R. LePage, 2012-04-26 Acclaimed text on engineering math for graduate students covers theory of complex variables, Cauchy-Riemann equations, Fourier and Laplace transform theory, Z-transform, and much more. Many excellent problems. |
electrical engineering math requirements: Pocket Book of Electrical Engineering Formulas Richard C. Dorf, 2018-04-27 Pocket Book of Electrical Engineering Formulas provides key formulas used in practically all areas of electrical engineering and applied mathematics. This handy, pocket-sized guide has been organized by topic field to make finding information quick and easy. The book features an extensive index and is an excellent quick reference for electrical engineers, educators, and students. |
electrical engineering math requirements: Engineering Electromagnetics Nathan Ida, 2015-03-20 This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter |
electrical engineering math requirements: A First Course in Electrical and Computer Engineering Louis L. Scharf, Richard T. Behrens, 1990 |
electrical engineering math requirements: Practical Electrical Engineering Sergey N. Makarov, Reinhold Ludwig, Stephen J. Bitar, 2016-06-27 This textbook provides comprehensive, in-depth coverage of the fundamental concepts of electrical engineering. It is written from an engineering perspective, with special emphasis on circuit functionality and applications. Reliance on higher-level mathematics and physics, or theoretical proofs has been intentionally limited in order to prioritize the practical aspects of electrical engineering. This text is therefore suitable for a number of introductory circuit courses for other majors such as mechanical, biomedical, aerospace, civil, architecture, petroleum, and industrial engineering. The authors’ primary goal is to teach the aspiring engineering student all fundamental tools needed to understand, analyze and design a wide range of practical circuits and systems. Their secondary goal is to provide a comprehensive reference, for both major and non-major students as well as practicing engineers. |
electrical engineering math requirements: Nonlinear Microwave Circuits Stephen A. Maas, 1997 This classic text is an excellent resource and time-saver for engineers who need to tackle troublesome nonlinear components that remain in use despite recent advances in microwave technology. NONLINEAR MICROWAVE CIRCUITS offers detailed, technically substantial coverage of key methods for the analysis, design, and optimization of nonlinear microwave circuits. Using minimal mathematics, it integrates in-depth, readable coverage of the underlying theories that guide these methods. This book is replete with valuable how to information on a wide range of topics. |
electrical engineering math requirements: Electrical Engineering for Non-Electrical Engineers, Second Edition S. Bobby Rauf, 2021-01-08 This book is designed to serve as a resource for exploring and understanding basic electrical engineering concepts, principles, analytical and mathematical strategies that will aid the reader in progressing their electrical engineering knowledge to intermediate or advanced levels. The study of electrical engineering concepts, principles and analysis techniques is made relatively easy for the reader by inclusion of most of the reference data, in form of excerpts from different parts of the book, within the discussion of each case study, exercise and self-assessment problem solution. This is done in an effort to facilitate quick study and comprehension of the material without repetitive search for reference data in other parts of the book. To this new edition the author has introduced a new chapter on batteries where the basic, yet important, facets of the battery and its sustainable and safe operation is covered. The reader will be shown the not-so-obvious charging and discharging performance characteristics of batteries that can be determining factors in the selection, application and optimal performance of batteries. |
electrical engineering math requirements: Electrical Engineering Fundamentals S. Bobby Rauf, 2020-12-17 provides a better understanding of electrical engineering terms, concepts, principles, laws, analysis methods, solution strategies and computational techniques. includes a brief introduction to the NEC and the Arc Flash Codes. deals with electrical energy cost and tips on improvement of electrical energy intensity in industrial and commercial environment. discusses myriad battery options available in the market; their strengths, weaknesses, opportunities that lie ahead and potential threats, and how batteries compare with capacitors as energy storage devices. |
electrical engineering math requirements: Precalculus Mathematics in a Nutshell George Finlay Simmons, 1997 A book that explains the fundamentals of geometry, algebra, and trigonometry with as fewest words as the author deems it possible. |
electrical engineering math requirements: Geometric Algebra for Electrical Engineers Peeter Joot, 2019-01-29 This book introduces the fundamentals of geometric algebra and calculus, and applies those tools to the study of electromagnetism. Geometric algebra provides a structure that can represent oriented point, line, plane, and volume segments. Vectors, which can be thought of as a representation of oriented line segments, are generalized to multivectors. A full fledged, but non-commutative (i.e. order matters) mul- tiplication operation will be defined for products of vectors. Namely, the square of a vector is the square of its length. This simple rule, along with a requirement that we can sum vectors and their products, essentially defines geometric algebra. Such sums of scalars, vectors and vector products are called multivectors. The reader will see that familiar concepts such as the dot and cross product are related to a more general vector product, and that algebraic structures such as complex numbers can be represented as multivectors. We will be able to utilize generalized complex exponentials to do rotations in arbitrarily oriented planes in space, and will find that simple geometric algebra representations of many geometric transformations are possible. Generalizations of the divergence and Stokes' theorems are required once we choose to work with multivector functions. There is an unfortunate learning curve required to express this gen- eralization, but once overcome, we will be left with a single powerful multivector integration theorem that has no analogue in conventional vector calculus. This fundamental theorem of geo- metric calculus incorporates Green's (area) theorem, the divergence theorem, Stokes' theorems, and complex residue calculus. Multivector calculus also provides the opportunity to define a few unique and powerful Green's functions that almost trivialize solutions of Maxwell's equations. Instead of working separately with electric and magnetic fields, we will work with a hybrid multivector field that includes both electric and magnetic field contributions, and with a mul- tivector current that includes both charge and current densities. The natural representation of Maxwell's equations is a single multivector equation that is easier to solve and manipulate then the conventional mess of divergence and curl equations are familiar to the reader. This book is aimed at graduate or advanced undergraduates in electrical engineering or physics. While all the fundamental results of electromagnetism are derived from Maxwell's equations, there will be no attempt to motivate Maxwell's equations themselves, so existing familiarity with the subject is desirable. |
electrical engineering math requirements: Advanced Mathematics for Electrical and Computer Engineers Randall L. Musselman, 2021-07-30 Advanced Mathematics for Electrical and Computer Engineers, by Randall L. Musselman, applies comprehensive math topics specifically to electrical and computer-engineering applications. These topics include:?Discrete mathothe mathematics of computation?Probability and random variablesofundamental to communication theory and solid-state devices?Ordinary differential equationsothe mathematics of circuit analysis?Laplace transforms othat makes the math of circuit analysis much more manageable?Fourier series and Fourier transformsothe mathematical backbone of signal analysis?Partial differential equationsothe math description of waves and boundary value problems?Linear algebraothe mathematical language of modern robotics?Vector calculusofundamental to electromagnetism and radio-wave propagationThis book explores each of these topics their own chapters, employing electrical and computer-engineering examples as applications. |
electrical engineering math requirements: Calculus for Scientists and Engineers K. D. Joshi, 2002 Focusing on the why's of mathematics rather than the how's, the unique approach of this text will appeal to a wide range of readers, from those taking a first course in calculus to those seeking deeper insights or needing a transition from calculus to analysis. The author takes care to supply strong motivations for abstract concepts, thereby helping beginners overcome the intimidation often felt when first confronting abstraction. While emphasizing the why's, the book does not entirely neglect the how's and provides sufficient exposure to the techniques through numerous exercises, with answers supplied in the back of the book. |
electrical engineering math requirements: Smart and Gets Things Done Avram Joel Spolsky, 2007-10-17 A good programmer can outproduce five, ten, and sometimes more run-of-the-mill programmers. The secret to success for any software company then is to hire the good programmers. But how to do that? In Joel on Hiring, Joel Spolsky draws from his experience both at Microsoft and running his own successful software company based in New York City. He writes humorously, but seriously about his methods for sorting resumes, for finding great candidates, and for interviewing, in person and by phone. Joel’s methods are not complex, but they do get to the heart of the matter: how to recognize a great developer when you see one. |
electrical engineering math requirements: Continuum Thermomechanics Alfredo Bermúdez de Castro, 2006-03-17 The general goal of this book is to deduce rigorously, from the first principles, the partial differential equations governing the thermodynamic processes undergone by continuum media under forces and heat. Solids and fluids are considered in a unified framework. Reacting mixtures of fluids are also included for which general notions of thermodynamics are recalled, such as the Gibbs equilibrium theory. Linear approximate models are mathematically obtained by calculating the derivatives of the constitutive response functions. They include the classical models for linear vibrations of thermoelastic solids and also for wave propagation in fluids (dissipative and non-dissipative acoustics and internal gravity waves). |
electrical engineering math requirements: Mathematics for Computer Science Eric Lehman, F. Thomson Leighton, Albert R. Meyer, 2017-03-08 This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. |
electrical engineering math requirements: Mastering Mathematics for Electrical and Electronic Engineering Noel Malcolm Morris, 1994 |
electrical engineering math requirements: Circuits, Matrices and Linear Vector Spaces Lawrence P. Huelsman, 2013-08-16 This high-level text explains the mathematics behind basic circuit theory. It covers matrix algebra, the basic theory of n-dimensional spaces, and applications to linear systems. Numerous problems. 1963 edition. |
electrical engineering math requirements: Introduction to Linear Algebra Serge Lang, 2012-12-06 This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual. |
electrical engineering math requirements: The Mathematics of Circuit Analysis Ernst S. Guillemin, 2003-03-17 A text book designed to give the engineer a reasonably complete coverage of the mathematical topics needed specifically or collaterally in the analysis or synthesis of electrical networks. |
electrical engineering math requirements: Electrical Engineering 101 Darren Ashby, 2011-10-13 Electrical Engineering 101 covers the basic theory and practice of electronics, starting by answering the question What is electricity? It goes on to explain the fundamental principles and components, relating them constantly to real-world examples. Sections on tools and troubleshooting give engineers deeper understanding and the know-how to create and maintain their own electronic design projects. Unlike other books that simply describe electronics and provide step-by-step build instructions, EE101 delves into how and why electricity and electronics work, giving the reader the tools to take their electronics education to the next level. It is written in a down-to-earth style and explains jargon, technical terms and schematics as they arise. The author builds a genuine understanding of the fundamentals and shows how they can be applied to a range of engineering problems. This third edition includes more real-world examples and a glossary of formulae. It contains new coverage of: - Microcontrollers - FPGAs - Classes of components - Memory (RAM, ROM, etc.) - Surface mount - High speed design - Board layout - Advanced digital electronics (e.g. processors) - Transistor circuits and circuit design - Op-amp and logic circuits - Use of test equipment - Gives readers a simple explanation of complex concepts, in terms they can understand and relate to everyday life. - Updated content throughout and new material on the latest technological advances. - Provides readers with an invaluable set of tools and references that they can use in their everyday work. |
electrical engineering math requirements: Advanced Engineering Mathematics Michael Greenberg, 2013-09-20 Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement. |
electrical engineering math requirements: Applied Differential Geometry William L. Burke, 1985-05-31 This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples. |
electrical engineering math requirements: Optimization and Dynamical Systems Uwe Helmke, John B. Moore, 2012-12-06 This work is aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control sys tems, signal processing, and linear algebra. The motivation for the results developed here arises from advanced engineering applications and the emer gence of highly parallel computing machines for tackling such applications. The problems solved are those of linear algebra and linear systems the ory, and include such topics as diagonalizing a symmetric matrix, singular value decomposition, balanced realizations, linear programming, sensitivity minimization, and eigenvalue assignment by feedback control. The tools are those, not only of linear algebra and systems theory, but also of differential geometry. The problems are solved via dynamical sys tems implementation, either in continuous time or discrete time , which is ideally suited to distributed parallel processing. The problems tackled are indirectly or directly concerned with dynamical systems themselves, so there is feedback in that dynamical systems are used to understand and optimize dynamical systems. One key to the new research results has been the recent discovery of rather deep existence and uniqueness results for the solution of certain matrix least squares optimization problems in geomet ric invariant theory. These problems, as well as many other optimization problems arising in linear algebra and systems theory, do not always admit solutions which can be found by algebraic methods. |
electrical engineering math requirements: Microwave Transistor Amplifiers Guillermo Gonzalez, 1997 Appropriate for upper level undergraduate or graduate courses in microwave transistor amplifiers and oscillators. It would also be useful for short-courses in companies that design and produce these devises. A unified presentation of the analysis and design of microwave transistor amplifiers (and oscillators) -- using scattering parameters techniques. |
electrical engineering math requirements: Computer-aided Design of Microwave Circuits K. C. Gupta, Ramesh Garg, Rakesh Chadha, 1981-01-01 |
electrical engineering math requirements: Advanced Engineering Mathematics Erwin Kreyszig, 2019-01-03 |
electrical engineering math requirements: Signals and Systems Gang Li, Liping Chang, Sheng Li, 2015-10-16 Signals and systems enjoy wide application in industry and daily life, and understanding basic concepts of the subject area is of importance to undergraduates majoring in engineering. With rigorous mathematical deduction, this introductory text book is helpful for students who study communications engineering, electrical and electronic engineering, and control engineering. Additionally, supplementary materials are provided for self-learners. |
electrical engineering math requirements: Advanced Engineering Mathematics with MATLAB Dean G. Duffy, 2021-12-30 In the four previous editions the author presented a text firmly grounded in the mathematics that engineers and scientists must understand and know how to use. Tapping into decades of teaching at the US Navy Academy and the US Military Academy and serving for twenty-five years at (NASA) Goddard Space Flight, he combines a teaching and practical experience that is rare among authors of advanced engineering mathematics books. This edition offers a smaller, easier to read, and useful version of this classic textbook. While competing textbooks continue to grow, the book presents a slimmer, more concise option. Instructors and students alike are rejecting the encyclopedic tome with its higher and higher price aimed at undergraduates. To assist in the choice of topics included in this new edition, the author reviewed the syllabi of various engineering mathematics courses that are taught at a wide variety of schools. Due to time constraints an instructor can select perhaps three to four topics from the book, the most likely being ordinary differential equations, Laplace transforms, Fourier series and separation of variables to solve the wave, heat, or Laplace's equation. Laplace transforms are occasionally replaced by linear algebra or vector calculus. Sturm-Liouville problem and special functions (Legendre and Bessel functions) are included for completeness. Topics such as z-transforms and complex variables are now offered in a companion book, Advanced Engineering Mathematics: A Second Course by the same author. MATLAB is still employed to reinforce the concepts that are taught. Of course, this Edition continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of previous editions. Worked solutions are given in the back of the book. |
electrical engineering math requirements: Probability, Statistics, and Random Processes for Electrical Engineering Alberto Leon-Garcia, 2008 While helping students to develop their problem-solving skills, the author motivates students with practical applications from various areas of ECE that demonstrate the relevance of probability theory to engineering practice. |
electrical engineering math requirements: Electric Machines and Drives Miroslav Chomat, 2011-02-28 The subject of this book is an important and diverse field of electric machines and drives. The twelve chapters of the book written by renowned authors, both academics and practitioners, cover a large part of the field of electric machines and drives. Various types of electric machines, including three-phase and single-phase induction machines or doubly fed machines, are addressed. Most of the chapters focus on modern control methods of induction-machine drives, such as vector and direct torque control. Among others, the book addresses sensorless control techniques, modulation strategies, parameter identification, artificial intelligence, operation under harsh or failure conditions, and modelling of electric or magnetic quantities in electric machines. Several chapters give an insight into the problem of minimizing losses in electric machines and increasing the overall energy efficiency of electric drives. |
electrical engineering math requirements: Basic Mathematics for Electronics Nelson Magor Cooke, Herbert F. R. Adams, 1970 Basic Mathematics for Electronics combines electronictheory and applications with the mathematical principles necessary to solve a wide range of circuit problems. Coverage of mathematical topics reflects current trends in electronics. A complete chapter is devoted to Karnaugh mapping to help students cope with the greater complexity of modern digital circuit devices. Marginal notes indicate areas of special interest in computers and computer usage.To facilitate learning, material is presented in a block form that employs a two-color, single-column format. After the initial chapters, sections may be studied ndependently. As each new topic is introduced, illustrative examples and numerous problems, graded from easy to difficult, are given for reinforcement. Answers to odd-numbered problems are provided in the back of the book. The Answers to Even-Numbered Problems booklet contains answers and selected worked-out solutions. A computerized Test Bank and Transparency Masters are also available with this edition. |
electrical engineering math requirements: Mathematical Circles Sergeĭ Aleksandrovich Genkin, Dmitriĭ Vladimirovich Fomin, Ilʹi︠a︡ Vladimirovich Itenberg, 1996 Suitable for both students and teachers who love mathematics and want to study its various branches beyond the limits of school curriculum. This book contains vast theoretical and problem material in main areas of what authors consider to be 'extracurricular mathematics'. |
Khan Academy
If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and …
Preparing to study electrical engineering on Khan Academy
Feb 1, 2018 · I'm an adult learner and have just started using KA to learn electrical engineering. I absolutely love what you do and hope this helps, on the Introduction to electrical engineering …
Electrical engineering - Khan Academy
Khan Academy offers comprehensive electrical engineering courses covering topics like circuit analysis, amplifiers, semiconductor devices, and electrostatics.
Engineering - Khan Academy Help Center
I would love an engineering section, Khan Academy has really set a standard for math and science and I would love to have a free resource that allows the in depth, step by step learning …
Khan Academy
Si estás viendo este mensaje, significa que estamos teniendo problemas para cargar materiales externos en nuestro sitio. Si estás detrás de un filtro de páginas web, por favor asegúrate de …
Ohm's law and resistance - Khan Academy
Math: Pre-K - 8th grade; Pre-K through grade 2 (Khan Kids) Early math review; 2nd grade; 3rd grade; 4th grade; 5th grade; 6th grade; 7th grade; 8th grade; 3rd grade math (Illustrative Math …
Khan Academy
Applicants should be rising undergraduate juniors and seniors pursuing computer science, engineering, math, or a related field Applications are typically accepted in October
Meet the Team. - Khan Academy
Mita has a Masters in Electrical and Computer Engineering from Rutgers University. Mita is passionate about education and in her spare time likes to teach young children to code. She …
What's the difference between Mathmatics 1 and Algebra 1?
Algebra 1 is a "traditional" course covering linear equations, algebraic expressions, and some simple functions. (See https://www.khanacademy.org/math/algebra for a full set of Khan's …
Khan Academy
If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and …
Preparing to study electrical engineering on Khan Academy
Feb 1, 2018 · I'm an adult learner and have just started using KA to learn electrical engineering. I absolutely love what you do and hope this helps, on the Introduction to electrical engineering …
Electrical engineering - Khan Academy
Khan Academy offers comprehensive electrical engineering courses covering topics like circuit analysis, amplifiers, semiconductor devices, and electrostatics.
Engineering - Khan Academy Help Center
I would love an engineering section, Khan Academy has really set a standard for math and science and I would love to have a free resource that allows the in depth, step by step learning …
Khan Academy
Si estás viendo este mensaje, significa que estamos teniendo problemas para cargar materiales externos en nuestro sitio. Si estás detrás de un filtro de páginas web, por favor asegúrate de …
Ohm's law and resistance - Khan Academy
Math: Pre-K - 8th grade; Pre-K through grade 2 (Khan Kids) Early math review; 2nd grade; 3rd grade; 4th grade; 5th grade; 6th grade; 7th grade; 8th grade; 3rd grade math (Illustrative Math …
Khan Academy
Applicants should be rising undergraduate juniors and seniors pursuing computer science, engineering, math, or a related field Applications are typically accepted in October
Meet the Team. - Khan Academy
Mita has a Masters in Electrical and Computer Engineering from Rutgers University. Mita is passionate about education and in her spare time likes to teach young children to code. She …
What's the difference between Mathmatics 1 and Algebra 1?
Algebra 1 is a "traditional" course covering linear equations, algebraic expressions, and some simple functions. (See https://www.khanacademy.org/math/algebra for a full set of Khan's …