Advertisement
electric vehicle training online: Electric Vehicle Engineering (Pb) Enge, 2020-11-24 |
electric vehicle training online: Vehicular Electric Power Systems Ali Emadi, Mehrdad Ehsani, John M. Miller, 2003-12-12 Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures |
electric vehicle training online: Electric Vehicle Technology Explained James Larminie, John Lowry, 2012-07-11 Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering. |
electric vehicle training online: Hybrid Electric Vehicles Chris Mi, M. Abul Masrur, 2017-11-29 The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering. |
electric vehicle training online: Electric Vehicle Machines and Drives K. T. Chau, 2015-05-13 A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material |
electric vehicle training online: Code of Practice for Electric Vehicle Charging Equipment Installation The Institution of Engineering and Technology, 2018-08 This Code of Practice provides a clear overview of EV charging equipment, as well as setting out the considerations needed prior to installation and the necessary physical and electrical installation requirements. It also details what needs to be considered when installing electric vehicle charging equipment in various different locations - such as domestic dwellings, on-street locations, and commercial and industrial premises. Key changes from the second edition include: Two completely new sections Vehicles as Energy Storage Integration with smart metering and control, automation and monitoring systems A new Annex A complete update to the new requirements in BS 7671:2018 Bringing the Code in line with revised regulations and good practice The risk assessments and checklists have also been reviewed and revised. This very well established Code of Practice, supported by all the major stakeholders in the industry, is essential reading for anyone involved in the rapid expansion of EV charging points, and those involved in maintenance, extension, modification and periodic verification of electrical installations that incorporate EV charging. |
electric vehicle training online: Electric and Hybrid Vehicles Tom Denton, 2016-04-06 The first book on electric and hybrid vehicles (EVs) written specifically for automotive students and vehicle owners Clear diagrams, photos and flow charts outline the charging infrastructure, how EV technology works, and how to repair and maintain hybrid and electric vehicles Optional IMI online eLearning materials enable students to study the subject further and test their knowledge Full coverage of IMI Level 2 Award in Hybrid Electric Vehicle Operation and Maintenance, IMI Level 3 Award in Hybrid Electric Vehicle Repair and Replacement, IMI Accreditation, C&G and other EV/Hybrid courses. The first book on electric and hybrid vehicles (endorsed by the IMI) starts with an introduction to the market, covering the different types of electric vehicle, costs and emissions, and the charging infrastructure, before moving on to explain how hybrid and electric vehicles work. A chapter on electrical technology introduces learners to subjects such as batteries, control systems and charging which are then covered in more detail within their own chapters. The book also covers the maintenance and repair procedures of these vehicles, including fault finding, servicing, repair and first-responder information. Case studies are used throughout to illustrate different technologies. |
electric vehicle training online: Electric Powertrain John G. Hayes, G. Abas Goodarzi, 2018-02-05 The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. Introduces and holistically integrates the key EV powertrain technologies. Provides a comprehensive overview of existing and emerging automotive solutions. Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. Presents many examples of powertrain technologies from leading manufacturers. Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. Investigates the environmental motivating factors and impacts of electromobility. Presents a structured university teaching stream from introductory undergraduate to postgraduate. Includes real-world problems and assignments of use to design engineers, researchers, and students alike. Features a companion website with numerous references, problems, solutions, and practical assignments. Includes introductory material throughout the book for the general scientific reader. Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The resource is a structured, holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. |
electric vehicle training online: Electric Vehicles: Prospects and Challenges Tariq Muneer, Mohan Kolhe, Aisling Doyle, 2017-07-11 Electric Vehicles: Prospects and Challenges looks at recent design methodologies and technological advancements in electric vehicles and the integration of electric vehicles in the smart grid environment, comprehensively covering the fundamentals, theory and design, recent developments and technical issues involved with electric vehicles. Considering the prospects, challenges and policy status of specific regions and vehicle deployment, the global case study references make this book useful for academics and researchers in all engineering and sustainable transport areas. - Presents a systematic and integrated reference on the essentials of theory and design of electric vehicle technologies - Provides a comprehensive look at the research and development involved in the use of electric vehicle technologies - Includes global case studies from leading EV regions, including Nordic and European countries China and India |
electric vehicle training online: Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Mehrdad Ehsani, Yimin Gao, Stefano Longo, Kambiz Ebrahimi, 2018-02-02 This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software. |
electric vehicle training online: Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles Chitra A., Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, S. Himavathi, 2020-07-21 Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams. |
electric vehicle training online: Thermal Management of Electric Vehicle Battery Systems Ibrahim Din¿er, Halil S. Hamut, Nader Javani, 2017-03-20 Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users’ battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: Discusses traditional and cutting edge technologies as well as research directions Covers thermal management systems and their selection for different vehicles and applications Includes case studies and practical examples from the industry Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses. |
electric vehicle training online: Hybrid Electric Vehicle System Modeling and Control Wei Liu, 2017-04-17 This new edition includes approximately 30% new materials covering the following information that has been added to this important work: extends the contents on Li-ion batteries detailing the positive and negative electrodes and characteristics and other components including binder, electrolyte, separator and foils, and the structure of Li-ion battery cell. Nickel-cadmium batteries are deleted. adds a new section presenting the modelling of multi-mode electrically variable transmission, which gradually became the main structure of the hybrid power-train during the last 5 years. newly added chapter on noise and vibration of hybrid vehicles introduces the basics of vibration and noise issues associated with power-train, driveline and vehicle vibrations, and addresses control solutions to reduce the noise and vibration levels. Chapter 10 (chapter 9 of the first edition) is extended by presenting EPA and UN newly required test drive schedules and test procedures for hybrid electric mileage calculation for window sticker considerations. In addition to the above major changes in this second edition, adaptive charging sustaining point determination method is presented to have a plug-in hybrid electric vehicle with optimum performance. |
electric vehicle training online: Electric and Hybrid Vehicles Gianfranco Pistoia, 2010-07-27 Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety. Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. - Contributions from the worlds leading industry and research experts - Executive summaries of specific case studies - Information on basic research and application approaches |
electric vehicle training online: Electric and Hybrid Vehicles Amir Khajepour, M. Saber Fallah, Avesta Goodarzi, 2014-03-05 An advanced level introductory book covering fundamental aspects, design and dynamics of electric and hybrid electric vehicles There is significant demand for an understanding of the fundamentals, technologies, and design of electric and hybrid electric vehicles and their components from researchers, engineers, and graduate students. Although there is a good body of work in the literature, there is still a great need for electric and hybrid vehicle teaching materials. Electric and Hybrid Vehicles: Technologies, Modeling and Control – A Mechatronic Approach is based on the authors’ current research in vehicle systems and will include chapters on vehicle propulsion systems, the fundamentals of vehicle dynamics, EV and HEV technologies, chassis systems, steering control systems, and state, parameter and force estimations. The book is highly illustrated, and examples will be given throughout the book based on real applications and challenges in the automotive industry. Designed to help a new generation of engineers needing to master the principles of and further advances in hybrid vehicle technology Includes examples of real applications and challenges in the automotive industry with problems and solutions Takes a mechatronics approach to the study of electric and hybrid electric vehicles, appealing to mechanical and electrical engineering interests Responds to the increase in demand of universities offering courses in newer electric vehicle technologies |
electric vehicle training online: Battery Management Systems for Large Lithium Ion Battery Packs Davide Andrea, 2010 This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the OC whysOCO and OC howsOCO of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost. |
electric vehicle training online: Electric Vehicle Battery Systems Sandeep Dhameja, 2001-10-30 Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems.* Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies |
electric vehicle training online: Automotive Electricity and Electronics Jones, 2017-05-23 Suitable for students with no experience in electricity and electronics, this volume in the CDX Master Automotive Technician Series introduces students to the basic skills and tools they need to perform electrical diagnosis in the shop. Utilizing a “strategy-based diagnostics” approach, this book helps students master technical trouble-shooting in order to properly resolve the customer concern on the first attempt. |
electric vehicle training online: Advanced Battery Management Technologies for Electric Vehicles Rui Xiong, Weixiang Shen, 2019-02-26 A comprehensive examination of advanced battery management technologies and practices in modern electric vehicles Policies surrounding energy sustainability and environmental impact have become of increasing interest to governments, industries, and the general public worldwide. Policies embracing strategies that reduce fossil fuel dependency and greenhouse gas emissions have driven the widespread adoption of electric vehicles (EVs), including hybrid electric vehicles (HEVs), pure electric vehicles (PEVs) and plug-in electric vehicles (PHEVs). Battery management systems (BMSs) are crucial components of such vehicles, protecting a battery system from operating outside its Safe Operating Area (SOA), monitoring its working conditions, calculating and reporting its states, and charging and balancing the battery system. Advanced Battery Management Technologies for Electric Vehicles is a compilation of contemporary model-based state estimation methods and battery charging and balancing techniques, providing readers with practical knowledge of both fundamental concepts and practical applications. This timely and highly-relevant text covers essential areas such as battery modeling and battery state of charge, energy, health and power estimation methods. Clear and accurate background information, relevant case studies, chapter summaries, and reference citations help readers to fully comprehend each topic in a practical context. Offers up-to-date coverage of modern battery management technology and practice Provides case studies of real-world engineering applications Guides readers from electric vehicle fundamentals to advanced battery management topics Includes chapter introductions and summaries, case studies, and color charts, graphs, and illustrations Suitable for advanced undergraduate and graduate coursework, Advanced Battery Management Technologies for Electric Vehicles is equally valuable as a reference for professional researchers and engineers. |
electric vehicle training online: Wireless Power Transfer for Electric Vehicles and Mobile Devices Chun T. Rim, Chris Mi, 2017-08-07 From mobile, cable-free re-charging of electric vehicles, smart phones and laptops to collecting solar electricity from orbiting solar farms, wireless power transfer (WPT) technologies offer consumers and society enormous benefits. Written by innovators in the field, this comprehensive resource explains the fundamental principles and latest advances in WPT and illustrates key applications of this emergent technology. Key features and coverage include: The fundamental principles of WPT to practical applications on dynamic charging and static charging of EVs and smartphones. Theories for inductive power transfer (IPT) such as the coupled inductor model, gyrator circuit model, and magnetic mirror model. IPTs for road powered EVs, including controller, compensation circuit, electro-magnetic field cancel, large tolerance, power rail segmentation, and foreign object detection. IPTs for static charging for EVs and large tolerance and capacitive charging issues, as well as IPT mobile applications such as free space omnidirectional IPT by dipole coils and 2D IPT for robots. Principle and applications of capacitive power transfer. Synthesized magnetic field focusing, wireless nuclear instrumentation, and future WPT. A technical asset for engineers in the power electronics, internet of things and automotive sectors, Wireless Power Transfer for Electric Vehicles and Mobile Devices is an essential design and analysis guide and an important reference for graduate and higher undergraduate students preparing for careers in these industries. |
electric vehicle training online: Introduction to Hybrid Vehicle System Modeling and Control Wei Liu, 2013-02-08 This is an engineering reference book on hybrid vehicle system analysis and design, an outgrowth of the author's substantial work in research, development and production at the National Research Council Canada, Azure Dynamics and now General Motors. It is an irreplaceable tool for helping engineers develop algorithms and gain a thorough understanding of hybrid vehicle systems. This book covers all the major aspects of hybrid vehicle modeling, control, simulation, performance analysis and preliminary design. It not only systemically provides the basic knowledge of hybrid vehicle system configuration and main components, but also details their characteristics and mathematic models. Provides valuable technical expertise necessary for building hybrid vehicle system and analyzing performance via drivability, fuel economy and emissions Built from the author's industry experience at major vehicle companies including General Motors and Azure Dynamics Inc. Offers algorithm implementations and figures/examples extracted from actual practice systems Suitable for a training course on hybrid vehicle system development with supplemental materials An essential resource enabling hybrid development and design engineers to understand the hybrid vehicle systems necessary for control algorithm design and developments. |
electric vehicle training online: Vehicle-to-Grid Junwei Lu, Jahangir Hossain, 2015-07-17 Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid |
electric vehicle training online: Electric and Hybrid Cars Curtis D. Anderson, Judy Anderson, 2010-03-30 This illustrated history chronicles electric and hybrid cars from the late 19th century to today's fuel cell and plug-in automobiles. It describes the politics, technology, marketing strategies, and environmental issues that have impacted electric and hybrid cars' research and development. The important marketing shift from a woman's car to going green is discussed. Milestone projects and technologies such as early batteries, hydrogen and bio-mass fuel cells, the upsurge of hybrid vehicles, and the various regulations and market forces that have shaped the industry are also covered. |
electric vehicle training online: Vehicle Powertrain Systems David Crolla, Behrooz Mashadi, 2011-12-30 The powertrain is at the heart of vehicle design; the engine – whether it is a conventional, hybrid or electric design – provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle. The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach – to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability. Vehicle Powertrain Systems provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB(R) software and many example programmes for vehicle calculations are provided in the text. Key features: Structured approach to explaining the fundamentals of powertrain engineering Integration of powertrain components into overall vehicle design Emphasis on practical vehicle design issues Extensive use of practical problems and worked examples Provision of MATLAB(R) programmes for the reader to use in vehicle performance calculations This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry |
electric vehicle training online: Electric and Hybrid Vehicles Iqbal Husain, 2021-02-22 A thoroughly revised third edition of this widely praised, bestselling textbook presents a comprehensive systems-level perspective of electric and hybrid vehicles with emphasis on technical aspects, mathematical relationships and basic design guidelines. The emerging technologies of electric vehicles require the dedication of current and future engineers, so the target audience for the book is the young professionals and students in engineering eager to learn about the area. The book is concise and clear, its mathematics are kept to a necessary minimum and it contains a well-balanced set of contents of the complex technology. Engineers of multiple disciplines can either get a broader overview or explore in depth a particular aspect of electric or hybrid vehicles. Additions in the third edition include simulation-based design analysis of electric and hybrid vehicles and their powertrain components, particularly that of traction inverters, electric machines and motor drives. The technology trends to incorporate wide bandgap power electronics and reduced rare-earth permanent magnet electric machines in the powertrain components have been highlighted. Charging stations are a critical component for the electric vehicle infrastructure, and hence, a chapter on vehicle interactions with the power grid has been added. Autonomous driving is another emerging technology, and a chapter is included describing the autonomous driving system architecture and the hardware and software needs for such systems. The platform has been set in this book for system-level simulations to develop models using various softwares used in academia and industry, such as MATLAB®/Simulink, PLECS, PSIM, Motor-CAD and Altair Flux. Examples and simulation results are provided in this edition using these software tools. The third edition is a timely revision and contribution to the field of electric vehicles that has reached recently notable markets in a more and more environmentally sensitive world. |
electric vehicle training online: ICT for Electric Vehicle Integration with the Smart Grid Nand Kishor, Jesús Fraile-Ardanuy, 2020 This book provides a basis for full integration of electric vehicles into the smart grid, through the use of ICT tools. It looks at transport and energy system modelling, simulation and optimisation processes; vehicle on-line optimal control, estimation and prediction; energy system strategic planning; and services such as smart charging. |
electric vehicle training online: Modeling for Hybrid and Electric Vehicles Using Simscape Shuvra Das, 2021-05-17 Simscape, a Matlab/Simulink toolbox for modeling physical systems, is the ideal platform for developing and deploying models for hybrid and electric vehicle systems and sub-systems. This book is step-by-step guide through the process of developing precise and accurate models for all critical areas of hybrid and electric vehicles. For electric and hybrid technology to deliver superior performance and efficiency, all sub-systems have to work seamlessly and in unison every time and all the time. To ensure this level of precision and reliability, modeling and simulation play crucial roles during the design and development cycle of electric and hybrid vehicles. The majority of books currently on the market discuss relevant technologies and the physics and engineering of hybrid and electric vehicles. This book is unique by focusing on developing models of physical systems at the core of these vehicles using the tool of choice, Simscape. Relevant background and appropriate theory are referenced and summarized in the context of model development with significantly more emphasis on the model development procedure and obtaining usable and accurate results. |
electric vehicle training online: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
electric vehicle training online: Holub on Patterns Allen Holub, 2004-09-27 * Allen Holub is a highly regarded instructor for the University of California, Berkeley, Extension. He has taught since 1982 on various topics, including Object-Oriented Analysis and Design, Java, C++, C. Holub will use this book in his Berkeley Extension classes. * Holub is a regular presenter at the Software Development conferences and is Contributing Editor for the online magazine JavaWorld, for whom he writes the Java Toolbox. He also wrote the OO Design Process column for IBM DeveloperWorks. * This book is not time-sensitive. It is an extremely well-thought out approach to learning design patterns, with Java as the example platform, but the concepts presented are not limited to just Java programmers. This is a complement to the Addison-Wesley seminal Design Patterns book by the Gang of Four. |
electric vehicle training online: Ten Years to Midnight Blair H. Sheppard, 2020-08-04 “Shows how humans have brought us to the brink and how humanity can find solutions. I urge people to read with humility and the daring to act.” —Harpal Singh, former Chair, Save the Children, India, and former Vice Chair, Save the Children International In conversations with people all over the world, from government officials and business leaders to taxi drivers and schoolteachers, Blair Sheppard, global leader for strategy and leadership at PwC, discovered they all had surprisingly similar concerns. In this prescient and pragmatic book, he and his team sum up these concerns in what they call the ADAPT framework: Asymmetry of wealth; Disruption wrought by the unexpected and often problematic consequences of technology; Age disparities--stresses caused by very young or very old populations in developed and emerging countries; Polarization as a symptom of the breakdown in global and national consensus; and loss of Trust in the institutions that underpin and stabilize society. These concerns are in turn precipitating four crises: a crisis of prosperity, a crisis of technology, a crisis of institutional legitimacy, and a crisis of leadership. Sheppard and his team analyze the complex roots of these crises--but they also offer solutions, albeit often seemingly counterintuitive ones. For example, in an era of globalization, we need to place a much greater emphasis on developing self-sustaining local economies. And as technology permeates our lives, we need computer scientists and engineers conversant with sociology and psychology and poets who can code. The authors argue persuasively that we have only a decade to make headway on these problems. But if we tackle them now, thoughtfully, imaginatively, creatively, and energetically, in ten years we could be looking at a dawn instead of darkness. |
electric vehicle training online: Energy Storage for Modern Power System Operations Sandeep Dhundhara, Yajvender Pal Verma, 2021-10-19 ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage |
electric vehicle training online: Automobile Mechanical and Electrical Systems Tom Denton, 2017-08-25 The second edition of Automobile Mechanical and Electrical Systems concentrates on core technologies to provide the essential information required to understand how different vehicle systems work. It gives a complete overview of the components and workings of a vehicle from the engine through to the chassis and electronics. It also explains the necessary tools and equipment needed in effective car maintenance and repair, and relevant safety procedures are included throughout. Designed to make learning easier, this book contains: Photographs, flow charts and quick reference tables Detailed diagrams and clear descriptions that simplify the more complicated topics and aid revision Useful features throughout, including definitions, key facts and ‘safety first’ considerations. In full colour and with support materials from the author’s website (www.automotive-technology.org), this is the guide no student enrolled on an automotive maintenance and repair course should be without. |
electric vehicle training online: Regulation of the Power Sector Ignacio J. Pérez-Arriaga, 2014-02-26 Regulation of the Power Sector is a unified, consistent and comprehensive treatment of the theories and practicalities of regulation in modern power-supply systems. The need for generation to occur at the time of use occasioned by the impracticality of large-scale electricity storage coupled with constant and often unpredictable changes in demand make electricity-supply systems large, dynamic and complex and their regulation a daunting task. Arranged in four parts, this book addresses both traditional regulatory frameworks and also liberalized and re-regulated environments. First, an introduction gives a full characterization of power supply including engineering, economic and regulatory viewpoints. The second part presents the fundamentals of regulation and the third looks at the regulation of particular components of the power sector in detail. Advanced topics and subjects still open or subject to dispute form the content of Part IV. In a sector where regulatory design is the key driver of both the industry efficiency and the returns on investment, Regulation of the Power Sector is directed at regulators, policy decision makers, business managers and researchers. It is a pragmatic text, well-tested by the authors’ quarter-century of experience of power systems from around the world. Power system professionals and students at all levels will derive much benefit from the authors’ wealth of blended theory and real-world-derived know-how. |
electric vehicle training online: Energy Systems for Electric and Hybrid Vehicles K.T. Chau, 2016-08-15 The book provides thorough coverage of energy systems for electric and hybrid vehicles with a focus on the three main energy system technologies - energy sources, battery charging and vehicle-to-grid systems. Energy sources includes electrochemical energy sources, electromechanical energy storage, hybrid energy sources, on-board solar energy harvesting, on-board thermoelectric energy recovery, and battery management. Battery charging technology ranges from the existing charging strategies to the latest wireless charging techniques for park-and-charge and move-and-charge. Vehicle-to-grid technology covers interdisciplinary topics which link electric vehicles, information technology and power systems for management of energy systems, power interfaces and service scheduling. Researchers and advanced students developing electric/hybrid vehicles and intelligent transport systems in industry and academia will find this book invaluable. As will researchers and advanced students working on automotive engineering and battery/power engineering. |
electric vehicle training online: Behaviour of Lithium-Ion Batteries in Electric Vehicles Gianfranco Pistoia, Boryann Liaw, 2018-02-10 This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles. |
electric vehicle training online: The Evolution of Electricity Markets in Europe Leonardo Meeus, 2020-11-27 Bridging theory and practice, this book offers insights into how Europe has experienced the evolution of modern electricity markets from the end of the 1990s to the present day. It explores defining moments in the process, including the four waves of European legislative packages, landmark court cases, and the impact of climate strikes and marches. |
electric vehicle training online: Environmental and Energy Policy and the Economy Matthew J. Kotchen, Tatyana Deryugina, James H. Stock, 2022-01-24 This volume presents six new papers on environmental and energy economics and policy in the United States. Rebecca Davis, J. Scott Holladay, and Charles Sims analyze recent trends in and forecasts of coal-fired power plant retirements with and without new climate policy. Severin Borenstein and James Bushnell examine the efficiency of pricing for electricity, natural gas, and gasoline. James Archsmith, Erich Muehlegger, and David Rapson provide a prospective analysis of future pathways for electric vehicle adoption. Kenneth Gillingham considers the consequences of such pathways for the design of fuel vehicle economy standards. Frank Wolak investigates the long-term resource adequacy in wholesale electricity markets with significant intermittent renewables. Finally, Barbara Annicchiarico, Stefano Carattini, Carolyn Fischer, and Garth Heutel review the state of research on the interactions between business cycles and environmental policy. |
electric vehicle training online: Hybrid Electric Vehicles Simona Onori, Lorenzo Serrao, Giorgio Rizzoni, 2015-12-16 This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies. |
electric vehicle training online: Vehicle thermal Management Systems Conference and Exhibition (VTMS10) IMechE, 2011-05-05 This book contains the papers presented at the IMechE and SAE International, Vehicle Thermal Management Systems Conference (VTMS10), held at the Heritage Motor Centre, Gaydon, Warwickshire, 15-19th May 2011. VTMS10 is an international conference organised by the Automobile Division and the Combustion Engines and Fuels Group of the IMechE and SAE International. The event is aimed at anyone involved with vehicle heat transfer, members of the OEM, tier one suppliers, component and software suppliers, consultants, and academics interested in all areas of thermal energy management in vehicles. This vibrant conference, the tenth VTMS, addresses the latest analytical and development tools and techniques, with sessions on: alternative powertrain, emissions, engines, heat exchange/manufacture, heating, A/C, comfort, underhood, and external/internal component flows. It covers the latest in research and technological advances in the field of heat transfer, energy management, comfort and the efficient management of all thermal systems within the vehicle. - Aimed at anyone working in or involved with vehicle heat transfer - Covers research and technological advances in heat transfer, energy management, comfort and efficient management of thermal systems within the vehicle |
electric vehicle training online: Driver Behaviour and Training Dr Lisa Dorn, 2012-10-28 Research on driver behaviour has clearly demonstrated that the goals and motivations a driver brings to the driving task are important determinants for driver behaviour. The objective of the book, and of the conference on which it is based, is to describe and discuss recent advances in the study of driving behaviour and driver training. It bridges the gap between practitioners in road safety, and theoreticians investigating driving behaviour, from a number of different perspectives and related disciplines. The book is timely in its aim of defining new approaches to driver training methodology based on decades of empirical research on driver behaviour. The contributing road safety researchers and professionals consider the kinds of methods that are effective in teaching drivers the higher-level skills needed to be a safe competent driver. The readership includes road safety researchers from a variety of different academic backgrounds, senior practitioners in the field from regulatory authorities and professional driver training organisations such as the police service, and private and public sector personnel who are concerned with improving road safety. |
The Best 10 Electricians near Verona, NJ 07044 - Yelp
Best Electricians in Verona, NJ 07044 - KB Electric, Anderson Electric, DLP Electric, Malfettone Electric, First Class Electric, Petronaci A Electrician, Aufiero Electric, CA Fleming Electric, …
Anderson Electric | Professional Electrical Services in Montclair, NJ
Contact us by calling 973-857-4333, or fill out the form below and we will be in contact within one business day.
Electricians in Verona, NJ - The Real Yellow Pages
From Business: K B Swanstrom is a trusted electrical contracting business located in Verona, NJ, specializing in commercial and industrial electrical services.
Top 10 Best Electricians in Verona, NJ | Angi
Jun 6, 2025 · Verified Reviews for Electrical Service pros in Verona, NJ *The Angi rating for Electrical Service companies in Verona, NJ is a rating based on verified reviews from our …
KEMPER ELECTRIC INC.
EAST HANOVER - 973-884-2137 VERONA - 973-239-6823 FAX 973-884-2181 EMAIL KEMPERELECTRIC@GMAIL.COM Kemper Electric is dedicated to the satisfaction of each …
Electrical Contractor Verona New Jersey | Toth Electric
We have generators in stock! Get your generator installed in as little as 8 weeks! (973) 996 - 4696. (973) 996 - 4696. info@tothelectricllc.com
Electricians Verona NJ
Since 1963, when homeowners or business owners have been looking for a commercial or residential electrician near Montclair NJ, Jersey City NJ and the rest of the local region, they …
Residential electrical services NJ - Electrician NJ Verona
Trusted and professional electrical services for homes and businesses in Verona, NJ. All work comes with a lifetime warranty on labor.
Anderson Electrical Contracting Corp. | Verona, NJ 07044
Anderson Electrical Contracting Corp. | HomeAdvisor prescreened Electricians, Fan Contractors in Verona, NJ.
Best Electrician Verona NJ - Nextgen Electric Near Me
Looking For Electrician In Verona, NJ? Are you having a project that requires the service of a professional electrician in Verona, NJ? You’re in the right place. Electricity is essential, almost …
The Best 10 Electricians near Verona, NJ 07044 - Yelp
Best Electricians in Verona, NJ 07044 - KB Electric, Anderson Electric, DLP Electric, Malfettone Electric, First Class Electric, Petronaci A Electrician, Aufiero Electric, CA Fleming Electric, …
Anderson Electric | Professional Electrical Services in Montclair, NJ
Contact us by calling 973-857-4333, or fill out the form below and we will be in contact within one business day.
Electricians in Verona, NJ - The Real Yellow Pages
From Business: K B Swanstrom is a trusted electrical contracting business located in Verona, NJ, specializing in commercial and industrial electrical services.
Top 10 Best Electricians in Verona, NJ | Angi
Jun 6, 2025 · Verified Reviews for Electrical Service pros in Verona, NJ *The Angi rating for Electrical Service companies in Verona, NJ is a rating based on verified reviews from our …
KEMPER ELECTRIC INC.
EAST HANOVER - 973-884-2137 VERONA - 973-239-6823 FAX 973-884-2181 EMAIL KEMPERELECTRIC@GMAIL.COM Kemper Electric is dedicated to the satisfaction of each …
Electrical Contractor Verona New Jersey | Toth Electric
We have generators in stock! Get your generator installed in as little as 8 weeks! (973) 996 - 4696. (973) 996 - 4696. info@tothelectricllc.com
Electricians Verona NJ
Since 1963, when homeowners or business owners have been looking for a commercial or residential electrician near Montclair NJ, Jersey City NJ and the rest of the local region, they …
Residential electrical services NJ - Electrician NJ Verona
Trusted and professional electrical services for homes and businesses in Verona, NJ. All work comes with a lifetime warranty on labor.
Anderson Electrical Contracting Corp. | Verona, NJ 07044
Anderson Electrical Contracting Corp. | HomeAdvisor prescreened Electricians, Fan Contractors in Verona, NJ.
Best Electrician Verona NJ - Nextgen Electric Near Me
Looking For Electrician In Verona, NJ? Are you having a project that requires the service of a professional electrician in Verona, NJ? You’re in the right place. Electricity is essential, almost …