Advertisement
emergent properties in biology: From System Complexity to Emergent Properties Moulay Aziz-Alaoui, Cyrille Bertelle, 2009-08-07 Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deducible from the lower-level motion of that system. Emergent properties are properties of the whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developed along the chapters, are able to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution. |
emergent properties in biology: The Molecule as Meme Jeffrey Huw Williams, 2018-11-26 It was not until 1971 that the authority for defining scientific units, the General Conference of Weights and Measures got around to defining the unit that is the basis of chemistry (the mole, or the quantity of something). Yet for all this tardiness in putting the chemical sciences on a sound quantitative basis, chemistry is an old and venerable subject and one naturally asks the question, why? Well, the truth is that up until the mid-1920s, many physicists did not believe in the reality of molecules. Indeed, it was not until after the physics community had accepted Ernest Rutherford's 1913 solar-system-like model of the atom, and the quantum mechanical model of the coupling of electron spins in atoms that physicists started to take seriously the necessity of explaining the chemical changes that chemists had been observing, investigating and recording since the days of the alchemists. |
emergent properties in biology: Self-Organizing Systems F.Eugene Yates, 2012-12-06 Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an integrated, systems approach to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there. |
emergent properties in biology: Biology Sandra Alters, 2000 Designed for a one or two semester non-majors course in introductory biology taught at most two and four-year colleges. This course typically fulfills a general education requirement, and rather than emphasizing mastery of technical topics, it focuses on the understanding of biological ideas and concepts, how they relate to real life, and appreciating the scientific methods and thought processes. Given the authors' work in and dedication to science education, this text's writing style, pedagogy, and integrated support package are all based on classroom-tested teaching strategies and learning theory. The result is a learning program that enhances the effectiveness & efficiency of the teaching and learning experience in the introductory biology course like no other before it. |
emergent properties in biology: Emergent Collective Properties, Networks and Information in Biology J. Ricard, 2006-02-10 The concept of network as a mathematical description of a set of states, or events, linked according to a certain topology has been developed recently and has led to a novel approach of real world. This approach is no doubt important in the field of biology. In fact biological systems can be considered networks. Thus, for instance, an enzyme-catalysed reaction is a network that links, according to a certain topology, the various states of the protein and of its complexes with the substrates and products of the chemical reaction. Connections between neurons, social relations in animal and human populations are also examples of networks. Hence there is little doubt that the concept of network transgresses the boundaries between traditional scientific disciplines. This book is aimed at discussing in physical terms these exciting new topics on simple protein model lattices, supramolecular protein edifices, multienzyme and gene networks. *Physical and mathematical approach of biological phenomena.*Offers biochemists and biologists the mathematical background required to understand the text.*Associates in the same general formulation, the ideas of communication of a message and organization of a system.*Provides a clear-cut definition and mathematical expression of the concepts of reduction, integration, emergence and complexity that were so far time-honoured and vague |
emergent properties in biology: Biological Emergences Robert G. B. Reid, 2009-08-21 A critique of selectionism and the proposal of an alternate theory of emergent evolution that is causally sufficient for evolutionary biology. Natural selection is commonly interpreted as the fundamental mechanism of evolution. Questions about how selection theory can claim to be the all-sufficient explanation of evolution often go unanswered by today's neo-Darwinists, perhaps for fear that any criticism of the evolutionary paradigm will encourage creationists and proponents of intelligent design. In Biological Emergences, Robert Reid argues that natural selection is not the cause of evolution. He writes that the causes of variations, which he refers to as natural experiments, are independent of natural selection; indeed, he suggests, natural selection may get in the way of evolution. Reid proposes an alternative theory to explain how emergent novelties are generated and under what conditions they can overcome the resistance of natural selection. He suggests that what causes innovative variation causes evolution, and that these phenomena are environmental as well as organismal. After an extended critique of selectionism, Reid constructs an emergence theory of evolution, first examining the evidence in three causal arenas of emergent evolution: symbiosis/association, evolutionary physiology/behavior, and developmental evolution. Based on this evidence of causation, he proposes some working hypotheses, examining mechanisms and processes common to all three arenas, and arrives at a theoretical framework that accounts for generative mechanisms and emergent qualities. Without selectionism, Reid argues, evolutionary innovation can more easily be integrated into a general thesis. Finally, Reid proposes a biological synthesis of rapid emergent evolutionary phases and the prolonged, dynamically stable, non-evolutionary phases imposed by natural selection. |
emergent properties in biology: Planetary Systems and the Origins of Life Ralph Pudritz, Paul Higgs, Jonathon Stone, 2013-01-17 Several major breakthroughs have helped contribute to the emerging field of astrobiology. Focusing on these developments, this fascinating book explores some of the most important problems in this field. It examines how planetary systems formed, and how water and the biomolecules necessary for life were produced. It then focuses on how life may have originated and evolved on Earth. Building on these two themes, the final section takes the reader on a search for life elsewhere in the Solar System. It presents the latest results of missions to Mars and Titan, and explores the possibilities of life in the ice-covered ocean of Europa. This interdisciplinary book is an enjoyable overview of this exciting field for students and researchers in astrophysics, planetary science, geosciences, biochemistry, and evolutionary biology. Colour versions of some of the figures are available at www.cambridge.org/9780521875486. |
emergent properties in biology: Concepts of Biology Samantha Fowler, Rebecca Roush, James Wise, 2023-05-12 Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy. |
emergent properties in biology: Self-Organized Biological Dynamics and Nonlinear Control Jan Walleczek, 2006-04-20 The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers. |
emergent properties in biology: Emergent Properties of Individual Organisms Christopher J. Paradise, A. Malcolm Campbell, 2016-04-27 This book begins by describing what an individual organism is, comparing preconceptions of the individual to non-standard ways of thinking about individuals. Variation in what individuals are is described, using giant fungi, clonal trees and honey bee hives as examples. Individuals are thus shown to be emergent properties. Other emergent properties of individuals are also described. Classic experiments that elucidated the source of emotions in humans and other mammals are described. Emotions arise from the actions of the nervous and endocrine system and often include a variety of signals given to other individuals of the same or different species. In particular, this book focuses on fear and anger, two emotions that are closely related and often confused, but that have been well studied. In one final example of emergent properties of individuals, cooperative behavior is analyzed. The behaviors displayed by individuals that facilitate cooperation among individuals and why those individuals may actually cooperate instead of compete when acquiring resources or defending against predators are discussed. |
emergent properties in biology: Rethinking Evolution: The Revolution That's Hiding In Plain Sight Gene Levinson, 2019-10-17 Rethinking Evolution links Darwin's early insights to the molecular realm inside living cells. This updated evolutionary synthesis provides an accessible explanation for biological complexity that cuts through the confusion surrounding evolutionary theory in a practical way.In addition to a wide-ranging survey of proposed updates to the modern synthesis, this title provides extraordinary new insights including emergent evolutionary potential and the generative phenotype. Drawing on well-characterized empirical facts, Rethinking Evolution transcends classical Darwinian natural selection while retaining those core principles that have stood the test of time.The updated synthesis brings a broad spectrum of specialized research together to provide a more plausible naturalistic explanation for biological evolution than ever before. Perspectives ranging from the role of energy in the origin of life to the networks of protein-DNA interactions that govern multicellular development are woven together in a robust conceptual fabric consistent with 21st century cutting-edge research.Inspired in part by the surprising ways that DNA sequences change — such as his early discovery of a fundamental mispairing mechanism by which DNA sequences expand — and drawing on a career's worth of experience both as a research scientist as well as a biology and chemistry tutor — the author provides an engaging account that is essential reading — both for the public awareness and understanding of the science of evolution and for students and professionals in the biomedical sciences.Related Link(s) |
emergent properties in biology: Crystal Engineering Jeffrey H Williams, 2017-09-28 There are more than 20 million chemicals in the literature, with new materials being synthesized each week. Most of these molecules are stable, and the 3-dimensional arrangement of the atoms in the molecules, in the various solids may be determined by routine x-ray crystallography. When this is done, it is found that this vast range of molecules, with varying sizes and shapes can be accommodated by only a handful of solid structures. This limited number of architectures for the packing of molecules of all shapes and sizes, to maximize attractive intermolecular forces and minimizing repulsive intermolecular forces, allows us to develop simple models of what holds the molecules together in the solid. In this volume we look at the origin of the molecular architecture of crystals; a topic that is becoming increasingly important and is often termed, crystal engineering. Such studies are a means of predicting crystal structures, and of designing crystals with particular properties by manipulating the structure and interaction of large molecules. That is, creating new crystal architectures with desired physical characteristics in which the molecules pack together in particular architectures; a subject of particular interest to the pharmaceutical industry. |
emergent properties in biology: Biology for AP ® Courses Julianne Zedalis, John Eggebrecht, 2017-10-16 Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences. |
emergent properties in biology: Evolutionary Theory Niles Eldredge, Telmo Pievani, Emanuele Serrelli, Ilya Tëmkin, 2016-09-23 The natural world is infinitely complex and hierarchically structured, with smaller units forming the components of progressively larger systems: molecules make up cells, cells comprise tissues and organs that are, in turn, parts of individual organisms, which are united into populations and integrated into yet more encompassing ecosystems. In the face of such awe-inspiring complexity, there is a need for a comprehensive, non-reductionist evolutionary theory. Having emerged at the crossroads of paleobiology, genetics, and developmental biology, the hierarchical approach to evolution provides a unifying perspective on the natural world and offers an operational framework for scientists seeking to understand the way complex biological systems work and evolve. Coedited by one of the founders of hierarchy theory and featuring a diverse and renowned group of contributors, this volume provides an integrated, comprehensive, cutting-edge introduction to the hierarchy theory of evolution. From sweeping historical reviews to philosophical pieces, theoretical essays, and strictly empirical chapters, it reveals hierarchy theory as a vibrant field of scientific enterprise that holds promise for unification across the life sciences and offers new venues of empirical and theoretical research. Stretching from molecules to the biosphere, hierarchy theory aims to provide an all-encompassing understanding of evolution and—with this first collection devoted entirely to the concept—will help make transparent the fundamental patterns that propel living systems. |
emergent properties in biology: Emergent Evolution Conwy Lloyd Morgan, 1923 |
emergent properties in biology: Emergence Mark Bedau, Paul Humphreys, 2008 Readings on the idea of emergence in evolution and classical works on emergence found in contemporary philosophy and science. Australian contributor. |
emergent properties in biology: Structure and Function of Intrinsically Disordered Proteins Peter Tompa, Alan Fersht, 2009-11-18 The existence and functioning of intrinsically disordered proteins (IDPs) challenge the classical structure-function paradigm that equates function with a well-defined 3D structure. Uncovering the disordered complement of proteomes and understanding their functioning can extend the structure-function paradigm to herald new breakthroughs in drug dev |
emergent properties in biology: Research at the Intersection of the Physical and Life Sciences National Research Council, Division on Earth and Life Studies, Division on Engineering and Physical Sciences, Board on Chemical Sciences and Technology, Board on Life Sciences, Board on Physics and Astronomy, Committee on Research at the Intersection of the Physical and Life Sciences, 2010-03-25 Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies. |
emergent properties in biology: Reduction and Emergence in Science and Philosophy Carl Gillett, 2016-09-08 Grand debates over reduction and emergence are playing out across the sciences, but these debates have reached a stalemate, with both sides declaring victory on empirical grounds. In this book, Carl Gillett provides theoretical frameworks with which to understand these debates, illuminating both the novel positions of scientific reductionists and emergentists and the recent empirical advances that drive these new views. Gillett also highlights the flaws in existing philosophical frameworks and reorients the discussion to reflect the new scientific advances and issues, including the nature of 'parts' and 'wholes', the character of aggregation, and thus the continuity of nature itself. Most importantly, Gillett shows how disputes about concrete scientific cases are empirically resolvable and hence how we can break the scientific stalemate. Including a detailed glossary of key terms, this volume will be valuable for researchers and advanced students of the philosophy of science and metaphysics, and scientific researchers working in the area. |
emergent properties in biology: Simulating Complex Systems by Cellular Automata Alfons G. Hoekstra, Jiri Kroc, Peter M.A. Sloot, 2010-06-13 Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on theory and applications, and a smaller part on software. The theory part contains fundamental chapters on how to design and/or apply CA for many different areas. In the applications part a number of representative examples of really using CA in a broad range of disciplines is provided - this part will give the reader a good idea of the real strength of this kind of modeling as well as the incentive to apply CA in their own field of study. Finally, we included a smaller section on software, to highlight the important work that has been done to create high quality problem solving environments that allow to quickly and relatively easily implement a CA model and run simulations, both on the desktop and if needed, on High Performance Computing infrastructures. |
emergent properties in biology: Out-of-Equilibrium (Supra)molecular Systems and Materials Nicolas Giuseppone, Andreas Walther, 2021-03-30 A must-have resource that covers everything from out-of-equilibrium chemical systems and materials to dissipative self-assemblies Out-of-Equilibrium Supramolecular Systems and Materials presents a comprehensive overview of the synthetic approaches that use supramolecular bonds in various out-of-thermodynamic equilibrium situations. With contributions from noted experts on the topic, the text contains information on the design of dissipative self-assemblies that maintain their structures when fueled by an external source of energy. The contributors also examine molecules and nanoscale objects and materials that can produce mechanical work based on molecular machines. Additionally, the book explores non-equilibrium supramolecular polymers that can be trapped in kinetically stable states, as well as out-of-equilibrium chemical systems and oscillators that are important to understand the emergence of complex behaviors and, in particular, the origin of life. This important book: Offers comprehensive coverage of fields from design of dissipative self-assemblies to non-equilibrium supramolecular polymers Presents information on a highly emerging and interdisciplinary topic Includes contributions from internationally renowned scientists Written for chemists, physical chemists, biochemists, material scientists, Out-of-Equilibrium Supramolecular Systems and Materials is an indispensable resource written by top scientists in the field. |
emergent properties in biology: The Music of Life Denis Noble, 2008-02-14 What is Life? Decades of research have resulted in the full mapping of the human genome - three billion pairs of code whose functions are only now being understood. The gene's eye view of life, advocated by evolutionary biology, sees living bodies as mere vehicles for the replication of the genetic codes. But for a physiologist, working with the living organism, the view is a very different one. Denis Noble is a world renowned physiologist, and sets out an alternative view to the question - one that becomes deeply significant in terms of the living, breathing organism. The genome is not life itself. Noble argues that far from genes building organisms, they should be seen as prisoners of the organism. The view of life presented in this little, modern, post-genome project reflection on the nature of life, is that of the systems biologist: to understand what life is, we must view it at a variety of different levels, all interacting with each other in a complex web. It is that emergent web, full of feedback between levels, from the gene to the wider environment, that is life. It is a kind of music. Including stories from Noble's own research experience, his work on the heartbeat, musical metaphors, and elements of linguistics and Chinese culture, this very personal and at times deeply lyrical book sets out the systems biology view of life. |
emergent properties in biology: Chemistry, Quantum Mechanics and Reductionism H. Primas, 2013-11-11 The purpose of this book is to provide a deeper insight into the modern theories of molecular matter. It incorporates the most important developments which have taken place during the last decades and reflects the modern trend to abstraction. At the present state of the art we have acquired a fairly good knowledge of how to. compute small molecules us ing the methods of quantum chemistry. Yet, in spite of many statements to the contrary and many superficial discussions, the theoretical basis of chemistry and biology is not safely in our hands. It is all but impossible to summarize the modern developments of the theory of matter in nontechnical language. But I hope that I can give some feeling for the problems, the intellectual excitements and the wor ries of some theoreticians. I know very well that such an enterprise is a dangerous adventure and that one says that a clever scientist should take care of his reputation by barricading himself behind the safe wall of his speciality. This volume is not meant to be a textbook; in many respects it has complementary goals. For good and bad reasons, most textbooks ignore the historical and philosophical aspects and go ahead on the basis of crude simplifications; many even lie like the devil and do not shrink from naive indoctrination. Some sections of this book can be read as commentaries on our standard texts, they are intended to stir the waters with controversy. |
emergent properties in biology: Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics Carl Faingold, Hal Blumenfeld, 2013-12-26 Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available |
emergent properties in biology: Scientific Realism and International Relations J. Joseph, C. Wight, 2010-07-30 Critical and scientific realism have emerged as important perspectives on international relations in recent years. The attraction of these approaches lies in the claim that they can transcend the positivism vs postpositivism divide. This book demonstrates the vitality of this approach and the difference that 'realism' makes. |
emergent properties in biology: Networks of Networks in Biology Narsis A. Kiani, David Gomez-Cabrero, Ginestra Bianconi, 2021-04 Introduces network inspired approaches for the analysis and integration of large, heterogeneous data sets in the life sciences. |
emergent properties in biology: Ecology of Biological Invasions of North America and Hawaii Harold A. Mooney, James A. Drake, 2012-12-06 The diversity of the earth's climates superimposed upon a complex configuration of physical features has provided the conditions for the evolution of a remarkable array of living things which are linked together into complex ecosystems. The kinds of organisms comprising the ecosystems of the world, and the nature of their interactions, have constantly changed through time due to coevolutionary interactions along with the effects of a continually changing physical environ ment. In recent evolutionary time there has been a dramatic and ever-accelerating rate of change in the configuration of these ecosystems because of the increasing influence of human beings. These changes range from subtle modifications caused by anthropogenically induced alterations in atmospheric properties to the total destruction of ecosystems. Many of these modifications have provided the fuel, food, and fiber which have allowed the expansion of human populations. Unfortunately, there have been many unanticipated changes which accompanied these modifications which have had effects detrimental to human welfare in cluding substantial changes in water and air quality. For example, the use of high-sulfur coal to produce energy in parts of North America is altering the properties of freshwater lakes and forests because of acidification. |
emergent properties in biology: Chemical Biology of the Genome Siddhartha Roy, Tapas K. Kundu, 2021-05-14 Chemical Biology of the Genome provides a comprehensive overview of essential concepts and principles of genomic and epigenomics dynamics as explored through the lens of chemical biology. Key examples and case studies illustrate chemical biology methods for study and analysis of the genome and epigenome, with an emphasis on relevance to physiological and pathophysiological processes and drug discovery. Authors and international leaders in biochemical studies of the genome, Drs. Siddhartha Roy and Tapas Kundu, adopt an integrated, interdisciplinary approach throughout, demonstrating how fast evolving chemical and mass-scale sequencing tools are increasingly used to interpret biochemical processes of the genome. Later sections discuss chemical modifications of the genome, DNA sequence recognition by proteins and gene regulation, GWAS and EpiGWAS studies, 3D architecture of the genome, and functional genome architecture. In-depth, discovery focused chapters examine intervention in gene networks using SiRNA/ShRNA, miRNA, and anti-miR, small molecule modulation of iPS, drug resistance pathways altered DNA methylation as drug targets, anti-miR as therapeutics, and nanodelivery of drugs. - Offers an interdisciplinary discussion of the chemical biology of the genome and epigenome, employing illustrative case studies in both physiological and pathophysiological contexts - Supports researchers in employing chemical and mass-scale sequencing approaches to interpret genomic and epigenomic dynamics - Highlights innovative pathways and molecular targets for new disease study and drug discovery |
emergent properties in biology: Systems Biology in Biotech & Pharma Aleš Prokop, Seth Michelson, 2012-01-05 The US is currently well ahead of the rest of the world in the development and application of SB and its principles especially as they pertain to basic medical research and development. This lead is largely due to its earlier start in the academic arena. However, there is evidence of rapid development in both the UK/EU and Japan, and the gap is narrowing, particularly in the UK. From an industrial point of view, the Pharmaceutical Industry based in the US and UK can capitalize on these opportunities and gain the benefits of this technology. Many educational institutions (particularly their medical divisions) at present are heavily business-oriented, realize that in this particular industrial environment, that every dollar counts. |
emergent properties in biology: The Biggest Ideas in the Universe Sean Carroll, 2022-09-20 INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come. |
emergent properties in biology: Emergent Phenomena in Correlated Matter Eva Pavarini, Erik Koch, Ulrich Schollwöck, 2013 |
emergent properties in biology: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
emergent properties in biology: Darwinian Reductionism Alexander Rosenberg, 2008-09-15 After the discovery of the structure of DNA in 1953, scientists working in molecular biology embraced reductionism—the theory that all complex systems can be understood in terms of their components. Reductionism, however, has been widely resisted by both nonmolecular biologists and scientists working outside the field of biology. Many of these antireductionists, nevertheless, embrace the notion of physicalism—the idea that all biological processes are physical in nature. How, Alexander Rosenberg asks, can these self-proclaimed physicalists also be antireductionists? With clarity and wit, Darwinian Reductionism navigates this difficult and seemingly intractable dualism with convincing analysis and timely evidence. In the spirit of the few distinguished biologists who accept reductionism—E. O. Wilson, Francis Crick, Jacques Monod, James Watson, and Richard Dawkins—Rosenberg provides a philosophically sophisticated defense of reductionism and applies it to molecular developmental biology and the theory of natural selection, ultimately proving that the physicalist must also be a reductionist. |
emergent properties in biology: Signs Of Life Ricard Sole, Brian Goodwin, 2002-01-04 Signs of Life applies the mathematics of order and disorder, of entropy, chance, and randomness, of chaos and nonlinear dynamics to the various mysteries of the living world at all levels. This book is an entirely new approach to understanding living systems and will help set the agenda for biology in the coming century. |
emergent properties in biology: Emergence John H. Holland, 2000 We are confronted with emergent systems everywhere and Holland shows how a theory of emergence can predict many complex behaviours in art and science. This book will appeal to scientists and anyone interested in scientific theory. |
emergent properties in biology: A Brief Introduction to the Philosophy of Mind Jack S. Crumley, 2006 Crumley introduces four core areas in contemporary philosophy of the mind: the mind/body problem, mental content (intentionality), mental causation, and the nature of consciousness. The book is distinctive in its further coverage of such fascinating topics as the nature of mental images, theories of concepts, and whether or not computers can think. |
emergent properties in biology: Biology of Aging Roger B. McDonald, 2019-06-07 Biology of Aging, Second Edition presents the biological principles that have led to a new understanding of the causes of aging and describes how these basic principles help one to understand the human experience of biological aging, longevity, and age-related disease. Intended for undergraduate biology students, it describes how the rate of biological aging is measured; explores the mechanisms underlying cellular aging; discusses the genetic pathways that affect longevity in various organisms; outlines the normal age-related changes and the functional decline that occurs in physiological systems over the lifespan; and considers the implications of modulating the rate of aging and longevity. The book also includes end-of-chapter discussion questions to help students assess their knowledge of the material. Roger McDonald received his Ph.D. from the University of Southern California and is Professor Emeritus in the Department of Nutrition at the University of California, Davis. Dr. McDonald’s research focused on mechanisms of cellular aging and the interaction between nutrition and aging. His research addressed two key topics in the field: the relationship between dietary restriction and lifespan, and the effect of aging on circadian rhythms and hypothalamic regulation. You can contact Dr. McDonald at rbmcdonald@ucdavis.edu. Related Titles Ahmad, S. I., ed. Aging: Exploring a Complex Phenomenon (ISBN 978-1-1381-9697-1) Moody, H. R. & J. Sasser. Gerontology: The Basics (ISBN 978-1-1387-7582-4) Timiras, P. S. Physiological Basis of Aging and Geriatrics (ISBN 978-0-8493-7305-3) |
emergent properties in biology: Incomplete Nature: How Mind Emerged from Matter Terrence W. Deacon, 2012 Examines the emergent processes that bridge the gap between organisms that think and have consciousness and those that do not and discusses the origins of life, information, and free will. |
emergent properties in biology: Untangling Complex Systems Pier Luigi Gentili, 2018-09-03 Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space. |
emergent properties in biology: Nerve, Muscle, and Synapse Bernard Katz, 1966 |
Pay My Bill - Emergent Health Partners
Contact emergent health partners. in an emergency call 9-1-1. schedule a non-emergency transport . Ann Arbor Dispatch Phone: 734-994-4111; Battle Creek Dispatch Phone: 269-964-6400; …
Emergent Health Partners - Home - Emergent Health Part…
Emergent Health’s paramedics and EMTs provide medical 9-1-1 coverage for more than 1 million Michigan residents and respond to upward of 200,000 medical emergencies per …
Emergent Health Careers - Emergent Health Partners
Our EMTs and Paramedics respond to 9-1-1 medical emergencies as well as non-emergent transfers. In addition to medical positions, we also have opportunities for 9-1-1 dispatchers, …
About Emergent Health Partners - Emergent Health P…
Emergent Health’s paramedics and EMTs provide medical 9-1-1 coverage for more than 1 million Michigan residents and respond to upward of 200,000 medical emergencies per …
Albion Community Ambulance - Emergent Health Partners
Our station is located in the Albion Department of Public Safety building. Albion Community Ambulance is a proud member of Emergent Health …