Advertisement
energy demand management system: Energy Systems and Management Ali Nezihi Bilge, Ayhan Özgür Toy, Mehmet Erdem Günay, 2015-03-25 Readers of this work will find examinations of the current status and future status for energy sources and technologies, their environmental interactions and the relevant global energy policies. The work begins with an overview of Energy Technologies for a Sustainable Future, which examines the correlation between population, economy and energy consumption in the past, and reviews the conventional and renewable energy sources as well as the management of them to sustain the ever-growing energy demand in the future. The rest of the chapters are divided into 3 parts; the first part of the book, “Energy Sources, Technologies and Environment”, consists of 12 chapters, which include research on new energy technologies and evaluation of their environmental effects. The second part “Advanced Energy Materials” includes 7 chapters devoted to research on material science for new energy technologies. The final section titled “Energy Management, Economics and Policy” is comprised of 10 chapters about planning, controlling and monitoring energy related processes together with the policies to satisfy the needs of increasing population and growing economy. The chapters are selected works from the International Conference on Energy and Management, which was organized by Istanbul Bilgi University Department of Energy Systems Engineering and PALMET Energy to share the knowledge on the recent trends, scientific developments, innovations and management methods in energy, and held on 5–7th June 2014 at Istanbul Bilgi University. |
energy demand management system: Research Anthology on Smart Grid and Microgrid Development Information Resources Management Association, 2021-09-24 This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world-- |
energy demand management system: Electric Distribution Systems Abdelhay A. Sallam, Om P. Malik, 2018-11-20 A comprehensive review of the theory and practice for designing, operating, and optimizing electric distribution systems, revised and updated Now in its second edition, Electric Distribution Systems has been revised and updated and continues to provide a two-tiered approach for designing, installing, and managing effective and efficient electric distribution systems. With an emphasis on both the practical and theoretical approaches, the text is a guide to the underlying theory and concepts and provides a resource for applying that knowledge to problem solving. The authors—noted experts in the field—explain the analytical tools and techniques essential for designing and operating electric distribution systems. In addition, the authors reinforce the theories and practical information presented with real-world examples as well as hundreds of clear illustrations and photos. This essential resource contains the information needed to design electric distribution systems that meet the requirements of specific loads, cities, and zones. The authors also show how to recognize and quickly respond to problems that may occur during system operations, as well as revealing how to improve the performance of electric distribution systems with effective system automation and monitoring. This updated edition: • Contains new information about recent developments in the field particularly in regard to renewable energy generation • Clarifies the perspective of various aspects relating to protection schemes and accompanying equipment • Includes illustrative descriptions of a variety of distributed energy sources and their integration with distribution systems • Explains the intermittent nature of renewable energy sources, various types of energy storage systems and the role they play to improve power quality, stability, and reliability Written for engineers in electric utilities, regulators, and consultants working with electric distribution systems planning and projects, the second edition of Electric Distribution Systems offers an updated text to both the theoretical underpinnings and practical applications of electrical distribution systems. |
energy demand management system: Peak Energy Demand and Demand Side Response Jacopo Torriti, 2015-07-16 With different intensities, depending on the season, every morning and evening of any weekday there are the same peaks in electricity demand. Peaks can bring about significantly negative environmental and economic impacts. Demand Side Response is a relatively recent solution in Europe which has the potential to reduce peak demand and ease impending capacity shortages. Peak Energy Demand and Demand Side Response presents evidence on a set of Demand Side Response activities, ranging from price-based to incentive-based programmes and policies. Examples are drawn from different programmes for both residential and non-residential sectors of electricity demand, including Time of Use tariffs, Critical Peak Pricing Automated Demand Controllers and Ancillary Services. The book also looks at the actual energy saving impacts of smart meters, the activities which constitute peak demand and the potential opportunities associated with European smart grids and Capacity Markets. This is the first book presenting comprehensive analysis of the impacts, cost benefits and risks associated with Demand Side Response programmes and policies. It should be of interest to students, scholars and policy-makers in the areas of energy, environmental economics and applied economics. |
energy demand management system: Hybrid Intelligent Technologies in Energy Demand Forecasting Wei-Chiang Hong, 2020-01-01 This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models. |
energy demand management system: Energy Management Systems Giridhar Kini, 2011-08-01 This book comprises of 13 chapters and is written by experts from industries, and academics from countries such as USA, Canada, Germany, India, Australia, Spain, Italy, Japan, Slovenia, Malaysia, Mexico, etc. This book covers many important aspects of energy management, forecasting, optimization methods and their applications in selected industrial, residential, generation system. This book also captures important aspects of smart grid and photovoltaic system. Some of the key features of books are as follows: Energy management methodology in industrial plant with a case study; Online energy system optimization modelling; Energy optimization case study; Energy demand analysis and forecast; Energy management in intelligent buildings; PV array energy yield case study of Slovenia;Optimal design of cooling water systems; Supercapacitor design methodology for transportation; Locomotive tractive energy resources management; Smart grid and dynamic power management. |
energy demand management system: Energy Management in Industry David Thorpe, 2013-12-17 Energy demand reduction is fast becoming a business activity for all companies and organisations because it can increase profits regardless of the nature of their core activity. The International Energy Agency believes that industry could improve its energy efficiency and reduce carbon dioxide emissions by almost a third using the best available practices and technologies. This guide looks at the many ways available to energy managers to achieve or even exceed this level of performance, including: base-lining consumption planning a monitoring and verification strategy metering (including smart, wireless metering) energy supply management motors and drives compressed air and process controls. Uniquely, it includes a whole chapter on greening data centres. It also looks at topics covered in greater detail in its companion volume, Energy Management in Buildings: insulation, lighting, renewable heating, cooling and HVAC systems. Further chapters examine minimising water use and how to make the financial case, both to prioritise measures for cost effectiveness, and to get management on board. This title is aimed at all professional energy, industry and facilities managers, energy consultants, students, trainees and academics and can be read alongside training for ISO 50001 - Energy Management Systems. It takes the reader from basic concepts to the latest advanced thinking, with principles applicable anywhere in the world and in any climate. |
energy demand management system: 2020 International Conference on Smart Grids and Energy Systems (SGES) IEEE Staff, 2020-11-23 Contributions are encouraged in all fields of Smart Grids and Energy Systems, particularly those in the following areas Smart Grids and Active Distribution Networks Grid Planning, Operation and Management Renewable Generation and Distributed Energy Resources Computational Intelligence, ICT and Blockchain Applications in Smart Grids Emerging Technologies and End user Systems Microgrids, Standalone Power Systems, and Virtual Power Plants Grid Resiliency, Reliability, Stability and Protection Electricity Market, Innovative Business Mechanism, Policy Regulatory Aspects Energy Forecasting, Peer to peer Energy Trading and Transactive Energy Management Smart Homes, Buildings and Cities and Cyber Security Smart Condition Monitoring and Fault Diagnosis Techniques IoT Enabled Energy Systems |
energy demand management system: Building Energy Flexibility and Demand Management Zhenjun Ma, Müslüm Arıcı, Amin Shahsavar, 2023-02-10 Building Energy Flexibility and Demand Management looks at the high penetration of intermittent renewable energy sources and the need for increased flexibility. Ensuring electrical power systems adapt to dynamic energy demand and supply conditions, the book supports the transition to a renewable energy future with current fluctuating power generation. By facilitating the penetration of renewable energy sources into the building sector and balancing electricity supply with demand in real-time, this book will provide fundamental concepts, theories, and methods to understand, quantify, design and optimize building energy flexibility. In addition, the book also provides case studies with emerging technologies to enhance building energy flexibility and demonstrate how demand management strategies can utilize energy flexibility for demand reduction and load shifting. It will be useful for all those researchers and engineers working in flexible energy systems and advanced demand side management strategies. - Focuses on how renewable energy and storage technologies can be appropriately designed and optimized to increase building energy flexibility - Discusses how building energy flexibility can contribute to reduced operating costs and grid optimization - Details how to effectively implement building energy flexibility for demand response, peak demand reduction and peak load shifting |
energy demand management system: Research Anthology on Clean Energy Management and Solutions Information Resources Management Association, 2021-06-25 Energy usage and consumption continue to rise globally each year, with the most efficient and cost-effective energy sources causing huge impacts to the environment. In an effort to mitigate harmful effects to the environment, implementing clean energy resources and utilizing green energy management strategies have become worldwide initiatives, with many countries from all regions quickly becoming leaders in renewable energy usage. Still, not every energy resource is without flaws. Researchers must develop effective and low-cost strategies for clean energy in order to find the balance between production and consumption. The Research Anthology on Clean Energy Management and Solutions provides in-depth research that explores strategies and techniques used in the energy production field to optimize energy efficiency in order to maintain clean and safe use while delivering ample energy coverage. The anthology also seeks solutions to energy that have not yet been optimized or are still produced in a way that is harmful to the environment. Covering topics such as hydrogen fuel cells, renewable energy, solar power, solar systems, cost savings, and climate protection, this text is essential for electrical engineers, nuclear engineers, environmentalists, managers, policymakers, government officials, professionals in the energy industry, researchers, academicians, and students looking for the latest research on clean energy management. |
energy demand management system: Energy Management Principles Craig B. Smith, Kelly E. Parmenter, 2015-11-06 Energy Management Principles: Applications, Benefits, Savings, Second Edition is a comprehensive guide to the fundamental principles and systematic processes of maintaining and improving energy efficiency and reducing waste. Fully revised and updated with analysis of world energy utilization, incentives and utility rates, and new content highlighting how energy efficiency can be achieved through 1 of 16 outlined principles and programs, the book presents cost effective analysis, case studies, global examples, and guidance on building and site auditing. This fully revised edition provides a theoretical basis for conservation, as well as the avenues for its application, and by doing so, outlines the potential for cost reductions through an analysis of inefficiencies. - Provides extensive coverage of all major fundamental energy management principles - Applies general principles to all major components of energy use, such as HVAC, electrical end use and lighting, and transportation - Describes how to initiate an energy management program for a building, a process, a farm or an industrial facility |
energy demand management system: Integration of Alternative Sources of Energy Felix A. Farret, M. Godoy Simoes, 2006-04-20 A unique electrical engineering approach to alternative sources ofenergy Unlike other books that deal with alternative sources of energyfrom a mechanical point of view, Integration of Alternative Sourcesof Energy takes an electrical engineering perspective. Moreover,the authors examine the full spectrum of alternative and renewableenergy with the goal of developing viable methods of integratingenergy sources and storage efficiently. Readers become thoroughlyconversant with the principles, possibilities, and limits ofalternative and renewable energy. The book begins with a general introduction and then reviewsprinciples of thermodynamics. Next, the authors explore both commonand up-and-coming alternative energy sources, including hydro,wind, solar, photovoltaic, thermosolar, fuel cells, and biomass.Following that are discussions of microturbines and inductiongenerators, as well as a special chapter dedicated to energystorage systems. After setting forth the fundamentals, the authorsfocus on how to integrate the various energy sources for electricalpower production. Discussions related to system operation,maintenance, and management, as well as standards forinterconnection, are also set forth. Throughout the book, diagrams are provided to demonstrate theelectrical operation of all the systems that are presented. Inaddition, extensive use of examples helps readers better grasp howintegration of alternative energy sources can beaccomplished. The final chapter gives readers the opportunity to learn about theHOMER Micropower Optimization Model. This computer model, developedby the National Renewable Energy Laboratory (NREL), assists in thedesign of micropower systems and facilitates comparisons of powergeneration techniques. Readers can download the software from theNREL Web site. This book is a must-read for engineers, consultants, regulators,and environmentalists involved in energy production and delivery,helping them evaluate alternative energy sources and integrate theminto an efficient energy delivery system. It is also a superiortextbook for upper-level undergraduates and graduate students. |
energy demand management system: International Energy Outlook , 1986 |
energy demand management system: The Economics of Energy Efficiency Steve Sorrell, 2004 This book examines energy management practices within a wide range of public and private sector organisations. |
energy demand management system: Smart Power Distribution Systems Qiang Yang, Ting Yang, Wie Li, 2018-10-17 Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way |
energy demand management system: Management of Energy/environment Systems Wesley K. Foell, 1979 Comporison of the geman democratic republic. A methodology for constructing and modeling energy/environment futures. Alternative energy/environment futures for rhone-alpes prologue: The wisconsin scenarios in retrospect. Alternative energy/environment futures for wisconsin. Cross-regional comparison of energy/environment futures. |
energy demand management system: Microgrid Magdi S. Mahmoud, 2016-10-24 Microgrids: Advanced Control Methods and Renewable Energy System Integration demonstrates the state-of-art of methods and applications of microgrid control, with eleven concise and comprehensive chapters. The first three chapters provide an overview of the control methods of microgrid systems that is followed by a review of distributed control and management strategies for the next generation microgrids. Next, the book identifies future research directions and discusses the hierarchical power sharing control in DC Microgrids. Chapter 4 investigates the demand side management in microgrid control systems from various perspectives, followed by an outline of the operation and controls of the smart microgrids in Chapter 5. Chapter 6 deals with control of low-voltage microgrids with master/slave architecture. The final chapters explain the load-Frequency Controllers for Distributed Power System Generation Units and the issue of robust control design for VSIs, followed by a communication solution denoted as power talk. Finally, in Chapter 11, real-time implementation of distributed control for an autonomous microgrid system is performed. - Addresses issues of contemporary interest to practitioners in the power engineering and management fields - Focuses on the role of microgrids within the overall power system structure and attempts to clarify the main findings relating to primary and secondary control and management at the microgrid level - Provides results from a quantified assessment of benefits from economic, environmental, operational, and social point-of-views - Presents the hierarchical control levels manifested in microgrid operations and evaluates the principles and main functions of centralized and decentralized control |
energy demand management system: Local Electricity Markets Tiago Pinto, Zita Vale, Steve Widergren, 2021-07-03 Local Electricity Markets introduces the fundamental characteristics, needs, and constraints shaping the design and implementation of local electricity markets. It addresses current proposed local market models and lessons from their limited practical implementation. The work discusses relevant decision and informatics tools considered important in the implementation of local electricity markets. It also includes a review on management and trading platforms, including commercially available tools. Aspects of local electricity market infrastructure are identified and discussed, including physical and software infrastructure. It discusses the current regulatory frameworks available for local electricity market development internationally. The work concludes with a discussion of barriers and opportunities for local electricity markets in the future. - Delineates key components shaping the design and implementation of local electricity market structure - Provides a coherent view on the enabling infrastructures and technologies that underpin local market expansion - Explores the current regulatory environment for local electricity markets drawn from a global panel of contributors - Exposes future paths toward widespread implementation of local electricity markets using an empirical review of barriers and opportunities - Reviews relevant local electricity market case studies, pilots and demonstrators already deployed and under implementation |
energy demand management system: Microgrid Protection and Control Dehua Zheng, Wei Zhang, Solomon Netsanet, Ping Wang, Girmaw Teshager Bitew, Dan Wei, Jun Yue, 2021-06-23 Microgrid Protection and Control is the result of numerous research works and publications by R&D engineers and scientists of the Microgrid and Energy Internet Research Centre. Through the authors long-routed experience in the microgrid and energy internet industry, this book looks at the sophisticated protection and control issues connected to the special nature of microgrid. The book explains the different ways of classifying types of microgrids and common misconceptions, looking at industrial and research trends along with the different technical issues and challenges faced with deploying microgrid in various settings. Forecasting short-term demand and renewable generation for optimal operation is covered with techniques for accurate enhancement supported with practical application examples. With chapters on dynamic, transient and tertiary control and experimental and simulation tests this reference is useful for all those working in the research, engineering and application of microgrids and power distribution systems. - Contains practical examples to support the research and experimental results on microgrid protection and control - Includes detailed theories and referential algorithms - Provides innovative solutions to technical issues in protection and control of microgrids |
energy demand management system: Mathematical Programming for Power Systems Operation Alejandro Garcés, 2021-12-01 Explore the theoretical foundations and real-world power system applications of convex programming In Mathematical Programming for Power System Operation with Applications in Python, Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations. The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems. Mathematical Programming for Power System Operation with Applications in Python uses Python and CVXPY as tools to solve power system optimization problems and includes models that can be solved with the presented framework. The book also includes: A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution, Mathematical Programming for Power System Operation with Applications in Python is also an ideal resource for graduate students and engineers practicing in the area of power system optimization. |
energy demand management system: Electrochemical Energy Storage for Renewable Sources and Grid Balancing Patrick T. Moseley, Jürgen Garche, 2014-10-27 Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction. - Provides state-of-the-art information on all of the storage systems together with an assessment of competing technologies - Features detailed technical, economic and environmental impact information of different storage systems - Contains information about the challenges that must be faced for batteries and hydrogen-storage to be used in conjunction with a fluctuating (renewable energy) power supply |
energy demand management system: Advances in Smart Grid Power System Anuradha Tomar, Ritu Kandari, 2020-10-23 Advances in Smart Grid Power System: Network, Control and Security discusses real world problems, solutions, and best practices in related fields. The book includes executable plans for smart grid systems, their network communications, tactics on protecting information, and response plans for cyber incidents. Moreover, it enables researchers and energy professionals to understand the future of energy delivery systems and security. Covering fundamental theory, mathematical formulations, practical implementations, and experimental testing procedures, this book gives readers invaluable insights into the field of power systems, their quality and reliability, their impact, and their importance in cybersecurity. - Includes supporting illustrations and tables along with valuable end of chapter reference sets - Provides a working guideline for the design and analysis of smart grids and their applications - Features experimental testing procedures in smart grid power systems, communication networks, reliability, and cybersecurity |
energy demand management system: Encyclopedia of Sustainable Technologies Martin Abraham, 2017-07-04 Encyclopedia of Sustainable Technologies, Eight Volume Set provides an authoritative assessment of the sustainable technologies that are currently available or in development. Sustainable technology includes the scientific understanding, development and application of a wide range of technologies and processes and their environmental implications. Systems and lifecycle analyses of energy systems, environmental management, agriculture, manufacturing and digital technologies provide a comprehensive method for understanding the full sustainability of processes. In addition, the development of clean processes through green chemistry and engineering techniques are also described. The book is the first multi-volume reference work to employ both Life Cycle Analysis (LCA) and Triple Bottom Line (TBL) approaches to assessing the wide range of technologies available and their impact upon the world. Both approaches are long established and widely recognized, playing a key role in the organizing principles of this valuable work. Provides readers with a one-stop guide to the most current research in the field Presents a grounding of the fundamentals of the field of sustainable technologies Written by international leaders in the field, offering comprehensive coverage of the field and a consistent, high-quality scientific standard Includes the Life Cycle Analysis and Triple Bottom Line approaches to help users understand and assess sustainable technologies |
energy demand management system: Climate Impacts on Energy Systems Jane O. Ebinger, 2011 While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and future planning need to consider emerging climate conditions and impacts on design, construction, operation, and maintenance. Integrated risk-based planning processes will be critical to address the climate change impacts and harmonize actions within and across sectors. Also, awareness, knowledge, and capacity impede mainstreaming of climate adaptation into the energy sector. However, the formal knowledge base is still nascent?information needs are complex and to a certain extent regionally and sector specific. This report provides an up-to-date compendium of what is known about weather variability and projected climate trends and their impacts on energy service provision and demand. It discusses emerging practices and tools for managing these impacts and integrating climate considerations into planning processes and operational practices in an environment of uncertainty. It focuses on energy sector adaptation, rather than mitigation which is not discussed in this report. This report draws largely on available scientific and peer-reviewed literature in the public domain and takes the perspective of the developing world to the extent possible. |
energy demand management system: 2021 8th International Conference on Smart Computing and Communications (ICSCC) IEEE Staff, 2021-07 The conference will bring together experts from the Smart computing and Communication systems community to discuss the timely issue of smart computing and low energy system design This will provide a forum for sharing insights, experiences and interaction on various aspects of evolving technologies and patterns related to Computer Science, Information Technology, Electronics, and associated Energy Systems The conference provides a platform for not only to the researchers from Asia but also from other continents across the globe, making this conference more international and attractive for participants |
energy demand management system: Handbook on Battery Energy Storage System Asian Development Bank, 2018-12-01 This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid. |
energy demand management system: Energy Pricing And Demand Management Mohan Munasinghe, 2019-03-13 Dr. Munasinghe emphasizes the importance of coordinated energy planning and pricing in less developed countries with particular reference to the interrelationships among the pricing policies adopted in various energy subsectors--electric power, petroleum, natural gas, coal, and traditional fuels (e.g., firewood, crop residues, and dung). In less developed countries the already complex problems typically faced by energy planners are exacerbated by high levels of market distortion, shortages of foreign exchange and resources for development, large numbers of poor households whose basic needs must be met, reliance on traditional fuels, and a relative paucity of energy data. The principal investment issues surrounding energy planning and the extent to which they influence pricing policy are also discussed. |
energy demand management system: Introduction to Industrial Energy Efficiency Patrik Thollander, Magnus Karlsson, Patrik Rohdin, Johan Wollin, Jakob Rosenqvist, 2020-01-29 Introduction to Industrial Energy Efficiency: Energy Auditing, Energy Management, and Policy Issues offers a systemic overview of all key-aspects involved in improving industrial energy efficiency in various industry sectors. It is organized in three parts, each dealing with a particular perspective needed to form a complete view of related issues. Sections focus on energy auditing and improved energy efficiency of companies from a predominantly technical perspective, shed light on energy management and factors that hinder or drive the adoption of energy efficiency practices in the manufacturing industry, and explore energy efficiency policy instruments and how they are designed, implemented and evaluated. Practicing engineers in the field of energy efficiency, engineering and energy researchers coming into the field, and graduate students will find this book to be an invaluable reference on the fundamental knowledge they need to get started in this area. - Provides, in one volume, a comprehensive overview of energy systems efficiency and management that is applied to various industrial processes - Explores operational measures for improvement, including case studies from varying countries and sectors - Discusses the barriers to, and driving forces for, improving energy efficiency in industrial settings, including technical, behavioral, organizational and policy aspects |
energy demand management system: The Future of Electricity Demand Tooraj Jamasb, Michael G. Pollitt, 2015-07-02 What will electricity and heat demand look like in a low-carbon world? Ambitious environmental targets will modify the shape of the electricity sector in the twenty-first century. 'Smart' technologies and demand-side management will be some of the key features of the future of electricity systems in a low-carbon world. Meanwhile, the social and behavioural dimensions will complement and interact with new technologies and policies. Electricity demand in the future will increasingly be tied up with the demand for heat and for transport. The Future of Electricity Demand looks into the features of the future electricity demand in light of the challenges posed by climate change. Written by a team of leading academics and industry experts, the book investigates the economics, technology, social aspects, and policies and regulations which are likely to characterize energy demand in a low-carbon world. It provides a comprehensive and analytical perspective on the future of electricity demand. |
energy demand management system: Large-Scale Wind Power Grid Integration Ningbo Wang, Chongqing Kang, Dongming Ren, 2015-11-05 Large Scale Wind Power Grid Integration: Technological and Regulatory Issues presents engineers with detailed solutions on the challenges of integrating and transmitting electricity generated from high power wind installations, covering all of the standard engineering issues associated with high power wind generation. The book includes detailed case studies from eight wind power bases in China, providing important insights for engineers in countries that are seeking to develop large-scale wind power farms. Also discussed is the emergence of 10 GW-level wind power bases that are now operational in China and those that are planned for offshore construction in Europe, the U.S., and other places in the world. China's leadership in Large-scale wind power bases with capacities over 1 GW (which already account for approximately 70%-80% of the total installed capacity in China) means that globally, engineers who are challenged with developing large-scale wind power installations can gain access to the experiences of Chinese engineers in this important technology. - Presents the first book to extensively introduce the technique of 10-GW wind power base - Discusses the technology of large-scale wind power delivery and consumption, including the analysis, simulation and calculation of wind power delivery capacity, system stabilization and control, wind power prediction and forecasting, peak load and frequency regulation of power generation - Introduces the background policy related to large-scale wind power delivery and the consumption plan, investigation of the present wind power policies around the world and the executive plan for the Jiuquan 10-GW wind power base |
energy demand management system: Energy Systems Engineering: Evaluation and Implementation Francis Vanek, Louis Albright, 2008-06-15 Market: energy professionals including analysts, system engineers, mechanical engineers, and electrical engineers Problems and worked-out equations use SI units |
energy demand management system: Energy Management of Integrated Energy System in Large Ports Wentao Huang, Moduo Yu, Hao Li, Nengling Tai, 2024-01-31 This open access book provides a detailed exploration of energy management in seaport integrated energy systems, highlighting their potential to replace conventional fuel-based energy usage and promote sustainable development of large ports. In order to achieve carbon neutrality, energy management technologies are crucial for the sustainable development of port systems that couple energies, logistics, and maritime transportation. Research on seaport integrated energy systems has attracted scholars and scientists from various disciplines, such as port electrification, logistics, microgrids, renewable energies, energy storages, and port automation. Taking a holistic approach, this book establishes a fundamental framework for the topic and discusses the electrification process, coupling mechanisms and modeling, optimal planning, low-carbon and economic operation, as well as applications of integrated energy systems in seaports. This book is intended for researchers, graduate students, and other readers interested in green seaport energy management and low-carbon operation technologies under the coupling between logistics and multi-energy systems. |
energy demand management system: ISO 50001 Energy Management Systems Johannes Kals, 2015-07-20 Managers and academia targeting energy performance improvements have a valuable tool in ISO 50001 Energy Management Systems, which allows for a certification after third-party audits. Business managers may reduce costs and fully tap the strategic potential of energy as a competitive factor. Academic lecturers can introduce energy in their specific field of teaching and research, helping their students to be successful. Students get a unique selling proposition being endowed with this cutting-edge expertise when applying for a job. The book provides an overview of energy and business administration as an evolving field, outlining the theoretical framework supported by practical examples. Energy oriented business administration involves • accountancy: linking technical energy reviews to cost- and revenue accounting, • operations, procurement, and supply chain management: implementing “demand side management” profiting of volatile electricity costs at the exchange, • managerial accounting: supporting decisions by energy performance indicators, making use of smart metering, business intelligence, and in-memory databases, • strategic planning and CSR: outpacing competitors while living up to ethical values. |
energy demand management system: Real-time Systems Kuodi Jian, 2016-06-08 This book is dedicated to Real-time Systems of broad applications, such as autonavigation (Kalman Filtering), real-time reconfiguration of distributed networks, real-time bilateral teleoperation control system over imperfect networks, and uniform interfaces for resource-sharing components in hierarchically scheduled real-time systems. In addition to that, wireless technology and its usage in implementing intelligent systems open a wide spectrum of real-time systems and offer great potential for improving people's life: for example, wireless sensor networks used in subways, reduced energy consumption in public buildings, improved security through public surveillance, and high efficiency through industrial automation. Furthermore, electric utilities and multi-core CPU architecture, the driving force of modern life, are part of subjects benefited from the topics covered in this book. |
energy demand management system: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
energy demand management system: Groundwater Arsenic Remediation Parimal Pal, 2015-05-15 Arsenic abatement from groundwater in locations with a central water distribution system is relatively simple. The real challenge is selecting the most effective and affordable treatment and scale up option for locations which lack the appropriate infrastructure. Groundwater Arsenic Remediation: Treatment Technology and Scale UP provides the latest breakthrough groundwater treatment technologies and modeling and simulation methods for project scale up and eventually field deployment in locations which lack the proper central water distribution system to ensure arsenic free groundwater. - Covers the different removal methods, such as chemical, adsorption, separation by membranes, and membrane distillation - Includes the state-of-the-art modeling & simulation methods for optimization and field deployment - Provides economic and comparative analysis of each arsenic treatment technology |
energy demand management system: Demand-Side Management and Electricity End-Use Efficiency A. de Almeida, Arthur H. Rosenfeld, 2012-12-06 A NATO Advanced Study Institute on Demand-Side Management and Electricity End-Use Efficiency was held in order to present and to discuss some of the most recent developments in demand-side electric power management and planning methodologies as well as research progress in relevant end-use technologies. Electricity is assuming an increasingly important role in buildings and industry, due to its flexibility, efficiency of conversion and cleanliness at the point of use. However the production and transmission of electricity requires huge investments and may have undesirable environmental impacts. The recent nuclear accident in Chernobyl and the damage caused by acid precipitation are creating increasing concerns about the impacts of power plants. Some environmental problems are local or regional, others such as global warming can affect the whole world. Although environmental impacts may be minimized with additional investments, electricity generation will become even more capital intensive. Energy, and electricity in particular, is not directly consumed by people. To achieve improved standards of living, what is important is. the level of production of goods and services. If it is possible to produce the same quantity of goods and services with less electricity and in a cost-effective way, substantial benefits can be gained. By reducing costs, electricity efficiency can raise the standards of living and increase the competitiveness of an economy. Electricity efficiency also leads to reduced requirements in power plant operation, thus leading to reduced consumption of primary energy supplies and a higher quality environment. |
energy demand management system: ADKAR Jeff Hiatt, 2006 In his first complete text on the ADKAR model, Jeff Hiatt explains the origin of the model and explores what drives each building block of ADKAR. Learn how to build awareness, create desire, develop knowledge, foster ability and reinforce changes in your organization. The ADKAR Model is changing how we think about managing the people side of change, and provides a powerful foundation to help you succeed at change. |
energy demand management system: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
energy demand management system: Energy Efficiency and Management for Engineers Mehmet Kanoglu, 2020-02-05 Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Identify energy conservation opportunities in buildings and industrial facilities and implement energy efficiency and management practices with confidence This comprehensive engineering textbook helps students master the fundamentals of energy efficiency and management and build confidence in applying basic principles of the field to practice. Written by a team of experienced energy efficiency practitioners and educators, Energy Efficiency and Management for Engineers features foundations and practice of energy efficiency principles for all aspects of energy production, distribution, and consumption. Packed with numerous worked-out examples and over 1,400 end-of-chapter problems, the book makes clear connections between theory and practice and provides the engineering rationale behind all energy efficiency measures. Coverage includes: • Energy management principles • Energy audits • Billing rate structures • Power factor • Specific energy consumption • Cogeneration • Boilers and steam systems • Heat recovery systems • Thermal insulation • Heating and cooling of buildings • Windows and infiltration • Electric motors • Compressed air lines • Lighting systems • Energy efficiency practices in buildings • Economic analysis and environmental impacts |
Using liquid air for grid-scale energy storage - MIT News
Apr 10, 2025 · The model then draws on state-of-the-art pricing data that’s released every year by the National Renewable Energy Laboratory (NREL) and is widely used by energy modelers …
New facility to accelerate materials solutions for fusion energy
6 days ago · By utilizing this approach, the PSFC is executing a major public-private partnership in fusion energy, realizing a research model that the U.S. fusion community has only recently …
Recovering from the past and transitioning to a better energy …
5 days ago · Transitioning to a decarbonized electricity system is one piece of the puzzle. Growing amounts of solar and wind energy — along with nuclear, hydropower, and …
Transforming fusion from a scientific curiosity into a powerful …
Dec 11, 2024 · The problem got harder when, in Hartwig’s last year in graduate school, the Department of Energy announced plans to terminate funding for the Alcator C-Mod tokamak, a …
A new approach could fractionate crude oil using much less energy
May 22, 2025 · Most of that energy goes into the heat needed to separate the components by their boiling point. In an advance that could dramatically reduce the amount of energy needed …
Explained: Generative AI’s environmental impact - MIT News
Jan 17, 2025 · Plus, generative AI models have an especially short shelf-life, driven by rising demand for new AI applications. Companies release new models every few weeks, so the …
Study shows how households can cut energy costs - MIT News
Jan 13, 2025 · In the U.S., separate research has shown that about three in 10 households report trouble paying energy bills. To conduct the experiment, the researchers ran two versions of an …
Taking the “training wheels” off clean energy | MIT News ...
Apr 3, 2025 · The good: Clean energy investment in the United States hit an all-time high of $272 billion in 2024. The bad: Announcements of future investments have tailed off. And the ugly: …
The role of modeling in the energy transition - MIT News
Jan 7, 2025 · EIA is the statistical and analytic agency within the U.S. Department of Energy, with a mission to collect, analyze, and disseminate independent and impartial energy information to …
Tackling the energy revolution, one sector at a time
Nov 8, 2024 · “Folks in the industry know that some kind of energy transition needs to happen, but they may not necessarily know for certain what the most viable path forward is,” says Liang. …
Using liquid air for grid-scale energy storage - MIT News
Apr 10, 2025 · The model then draws on state-of-the-art pricing data that’s released every year by the National Renewable Energy Laboratory (NREL) and is widely used by energy modelers worldwide. The NREL dataset forecasts prices, …
New facility to accelerate materials solutions for fusion energy
Jun 9, 2025 · By utilizing this approach, the PSFC is executing a major public-private partnership in fusion energy, realizing a research model that the U.S. fusion community has only recently started to explore, and demonstrating the crucial …
Recovering from the past and transitioning to a better energy future ...
6 days ago · Transitioning to a decarbonized electricity system is one piece of the puzzle. Growing amounts of solar and wind energy — along with nuclear, hydropower, and geothermal — are slowly transforming the energy electricity landscape, but …
Transforming fusion from a scientific curiosity into a powerful clean ...
Dec 11, 2024 · The problem got harder when, in Hartwig’s last year in graduate school, the Department of Energy announced plans to terminate funding for the Alcator C-Mod tokamak, a major fusion experiment in MIT’s Plasma Science and Fusion …
A new approach could fractionate crude oil using much less energy
May 22, 2025 · Most of that energy goes into the heat needed to separate the components by their boiling point. In an advance that could dramatically reduce the amount of energy needed for crude oil fractionation, MIT engineers have …