Engineering In Stem Strand

Advertisement



  engineering in stem strand: STEM Integration in K-12 Education National Research Council, National Academy of Engineering, Committee on Integrated STEM Education, 2014-02-28 STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.
  engineering in stem strand: STEM Education Across the Learning Continuum Amy MacDonald, Lena Danaia, Steve Murphy, 2020-02-18 This is the first comprehensive book to consider STEM education from early childhood through to senior secondary education. It approaches STEM as a form of real-world, problem-based education that draws on the knowledge and skills of the science, technology, engineering and mathematics disciplines. Rather than presenting each of the separate disciplines to an equal extent, it focuses on STEM researchers’ perspectives on how their work contributes to effective STEM education in terms of building knowledge, skills and engagement. Gathering contributions by authors from various countries, the book explores effective STEM education from a range of perspectives within the international context. Moreover, it addresses critical issues in STEM education, including transition and trajectories, gender, rurality, socioeconomic status and cultural diversity. By doing so, it not only shares the current state of knowledge in this field, but also offers a source of inspiration for future research.
  engineering in stem strand: Science Education in Theory and Practice Ben Akpan, Teresa J. Kennedy, 2020-09-08 This book provides a collection of applicable learning theories and their applications to science teaching. It presents a synthesis of historical theories while also providing practical implications for improvement of pedagogical practices aimed at advancing the field into the future. The theoretical viewpoints included in this volume span cognitive and social human development, address theories of learning, and describe approaches to teaching and curriculum development. The book presents and discusses humanistic, behaviourist, cognitivist, and constructivist theories. In addition, it looks at other theories, such as multiple intelligences theory, systems thinking, gender/sexuality theory and indigenous knowledge systems. Each chapter follows a reader-motivated approach anchored on a narrative genre. The book serves as a guide for those aiming to create optional learning experiences to prepare the next generation STEM workforce. Chapter “The Bildung Theory—From von Humboldt to Klafki and Beyond” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
  engineering in stem strand: International Handbook of Technology Education , 2006-01-01 This first volume in the International Technology Education Series offers a unique, worldwide collection of national surveys into the developments of Technology Education in the past two decades.
  engineering in stem strand: STEM Lesson Essentials, Grades 3-8 Jo Anne Vasquez, Cary Sneider, Michael Comer, 2013 Want to know how to implement authentic STEM teaching and learning into your classroom? STEM Lesson Essentials provides all the tools and strategies you'll need to design integrated, interdisciplinary STEM lessons and units that are relevant and exciting to your students. With clear definitions of both STEM and STEM literacy, the authors argue that STEM in itself is not a curriculum, but rather a way of organizing and delivering instruction by weaving the four disciplines together in intentional ways. Rather than adding two new subjects to the curriculum, the engineering and technology practices can instead be blended into existing math and science lessons in ways that engage students and help them master 21st century skills.
  engineering in stem strand: A Framework for K-12 Science Education National Research Council, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on a Conceptual Framework for New K-12 Science Education Standards, 2012-02-28 Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
  engineering in stem strand: Barriers and Opportunities for 2-Year and 4-Year STEM Degrees National Academies of Sciences, Engineering, and Medicine, National Academy of Engineering, Policy and Global Affairs, Board on Higher Education and Workforce, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on Barriers and Opportunities in Completing 2-Year and 4-Year STEM Degrees, 2016-05-18 Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be stemmed and greater efficiencies realized? These questions and others are at the heart of this study. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees reviews research on the roles that people, processes, and institutions play in 2-and 4-year STEM degree production. This study pays special attention to the factors that influence students' decisions to enter, stay in, or leave STEM majorsâ€quality of instruction, grading policies, course sequences, undergraduate learning environments, student supports, co-curricular activities, students' general academic preparedness and competence in science, family background, and governmental and institutional policies that affect STEM educational pathways. Because many students do not take the traditional 4-year path to a STEM undergraduate degree, Barriers and Opportunities describes several other common pathways and also reviews what happens to those who do not complete the journey to a degree. This book describes the major changes in student demographics; how students, view, value, and utilize programs of higher education; and how institutions can adapt to support successful student outcomes. In doing so, Barriers and Opportunities questions whether definitions and characteristics of what constitutes success in STEM should change. As this book explores these issues, it identifies where further research is needed to build a system that works for all students who aspire to STEM degrees. The conclusions of this report lay out the steps that faculty, STEM departments, colleges and universities, professional societies, and others can take to improve STEM education for all students interested in a STEM degree.
  engineering in stem strand: Successful K-12 STEM Education National Research Council, Division of Behavioral and Social Sciences and Education, Board on Testing and Assessment, Board on Science Education, Committee on Highly Successful Schools or Programs for K-12 STEM Education, 2011-06-22 Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding success in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.
  engineering in stem strand: Cracking the code UNESCO, 2017-09-04 This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
  engineering in stem strand: English Learners in STEM Subjects National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Children, Youth, and Families, Board on Science Education, Committee on Supporting English Learners in STEM Subjects, 2019-01-28 The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languages, variation in discourse practices, and, in some cases, experiences with schooling in other countries. English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives examines the research on ELs' learning, teaching, and assessment in STEM subjects and provides guidance on how to improve learning outcomes in STEM for these students. This report considers the complex social and academic use of language delineated in the new mathematics and science standards, the diversity of the population of ELs, and the integration of English as a second language instruction with core instructional programs in STEM.
  engineering in stem strand: Expanding Underrepresented Minority Participation Institute of Medicine, National Academy of Engineering, National Academy of Sciences, Policy and Global Affairs, Committee on Science, Engineering, and Public Policy, Committee on Underrepresented Groups and the Expansion of the Science and Engineering Workforce Pipeline, 2011-07-29 In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. Expanding Underrepresented Minority Participation explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making minority participation in STEM education at all levels a national priority. Expanding Underrepresented Minority Participation analyzes the rate of change and the challenges the nation currently faces in developing a strong and diverse workforce. Although minorities are the fastest growing segment of the population, they are underrepresented in the fields of science and engineering. Historically, there has been a strong connection between increasing educational attainment in the United States and the growth in and global leadership of the economy. Expanding Underrepresented Minority Participation suggests that the federal government, industry, and post-secondary institutions work collaboratively with K-12 schools and school systems to increase minority access to and demand for post-secondary STEM education and technical training. The book also identifies best practices and offers a comprehensive road map for increasing involvement of underrepresented minorities and improving the quality of their education. It offers recommendations that focus on academic and social support, institutional roles, teacher preparation, affordability and program development.
  engineering in stem strand: STEM by Design Anne Jolly, 2016-06-10 How do you create effective STEM classrooms that energize students, help them grow into creative thinkers and collaborators, and prepare them for their futures? This practical book from expert Anne Jolly has all the answers and tools you need to get started or enhance your current program. Based on the author’s popular MiddleWeb blog of the same name, STEM by Design reveals the secrets to successful lessons in which students use science, math, and technology to solve real-world engineering design problems. You’ll learn how to: Select and adapt quality existing STEM lessons that present authentic problems, allow for creative approaches, and engage students in meaningful teamwork; Create your own student-centered STEM lessons based on the Engineering Design Process; Assess students’ understanding of basic STEM concepts, their problem-solving abilities, and their level of engagement with the material; Teach STEM in after-school programs to further build on concepts covered in class; Empower girls to aspire to careers in STEM and break down the barriers of gender bias; Tap into STEM's project-based learning style to attract and engage all students. Throughout this user-friendly book, you’ll find design tools such as checklists, activities, and assessments to aid you in developing or adapting STEM lessons. These tools, as well as additional teacher resources, are also available as free downloads from the book’s website, http://www.stem-by-design.com.
  engineering in stem strand: Encyclopedia of Science Education Richard Gunstone, 2016-04-18 The Encyclopedia of Science Education provides a comprehensive international reference work covering the range of methodologies, perspectives, foci, and cultures of this field of inquiry, and to do so via contributions from leading researchers from around the globe. Because of the frequent ways in which scholarship in science education has led to developments in other curriculum areas, the encyclopedia has significance beyond the field of science education. The Encyclopedia of Science Education is aimed at graduate students, researchers, developers in science education and science education research. The topics to be covered encompass all areas of science education and it includes biographical entries on science educators, as well as educators whose work has had an impact on science education as a research field.
  engineering in stem strand: Theorizing STEM Education in the 21st Century Kehdinga George Fomunyam, 2020-02-26 Theorising STEM Education in the 21st Century is a book that captures the essence of Science, Technology, Engineering and Mathematics and the intricacies of STEM education in the contemporary society. It explores STEM as an interdisciplinary field as well as the individual disciplines that make up STEM. This ensures the field of STEM as a whole is theorised. The book provides critical insight on STEM education from Cairo to Cape Town or from America to Indonesia. With a team of authors from universities across the world, the book is a vital contribution to critical scholarship on STEM education in contemporary times.
  engineering in stem strand: Minority Serving Institutions National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on Closing the Equity Gap: Securing Our STEM Education and Workforce Readiness Infrastructure in the Nation's Minority Serving Institutions, 2019-02-05 There are over 20 million young people of color in the United States whose representation in STEM education pathways and in the STEM workforce is still far below their numbers in the general population. Their participation could help re-establish the United States' preeminence in STEM innovation and productivity, while also increasing the number of well-educated STEM workers. There are nearly 700 minority-serving institutions (MSIs) that provide pathways to STEM educational success and workforce readiness for millions of students of colorâ€and do so in a mission-driven and intentional manner. They vary substantially in their origins, missions, student demographics, and levels of institutional selectivity. But in general, their service to the nation provides a gateway to higher education and the workforce, particularly for underrepresented students of color and those from low-income and first-generation to college backgrounds. The challenge for the nation is how to capitalize on the unique strengths and attributes of these institutions and to equip them with the resources, exceptional faculty talent, and vital infrastructure needed to educate and train an increasingly critical portion of current and future generations of scientists, engineers, and health professionals. Minority Serving Institutions examines the nation's MSIs and identifies promising programs and effective strategies that have the highest potential return on investment for the nation by increasing the quantity and quality MSI STEM graduates. This study also provides critical information and perspective about the importance of MSIs to other stakeholders in the nation's system of higher education and the organizations that support them.
  engineering in stem strand: Engineering in Elementary STEM Education Christine M. Cunningham, 2018-02-16 Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of Science team that has spent 15 years developing elementary engineering curricula, this book outlines how engineering can be integrated into a broader STEM curriculum, details its pedagogical benefits to students, and includes classroom examples to help educators tailor instruction to engage diverse students. Featuring vignettes, case studies, videos, research results, and assessments, this resource will help readers visualize high-quality elementary engineering and understand the theoretical principles in context. Book Features: Frameworks to help teachers create curricula and structure activities. A focus on engaging the diversity of learners in today’s classrooms. Experiences from the nation’s leading elementary education curriculum that has reached 13.3 million children and 165,000 educators. Go to eie.org/book for videos, assessment tools, reproducibles, and other instructional supports that enliven the text.
  engineering in stem strand: Encyclopedia of Mathematics Education Stephen Lerman, 2020-02-07 The Encyclopedia of Mathematics Education is a comprehensive reference text, covering every topic in the field with entries ranging from short descriptions to much longer pieces where the topic warrants more elaboration. The entries provide access to theories and to research in the area and refer to the leading publications for further reading. The Encyclopedia is aimed at graduate students, researchers, curriculum developers, policy makers, and others with interests in the field of mathematics education. It is planned to be 700 pages in length in its hard copy form but the text will subsequently be up-dated and developed on-line in a way that retains the integrity of the ideas, the responsibility for which will be in the hands of the Editor-in-Chief and the Editorial Board. This second edition will include additional entries on: new ideas in the politics of mathematics education, working with minority students, mathematics and art, other cross-disciplinary studies, studies in emotions and mathematics, new frameworks for analysis of mathematics classrooms, and using simulations in mathematics teacher education. Existing entries will be revised and new entries written. Members of the international mathematics education research community will be invited to propose new entries. Editorial Board: Bharath Sriraman Melony Graven Yoshinori Shimizu Ruhama Even Michele Artigue Eva Jablonka Wish to Become an Author? Springer's Encyclopedia of Mathematics Education's first edition was published in 2014. The Encyclopedia is a living project and will continue to accept articles online as part of an eventual second edition. Articles will be peer-reviewed in a timely manner and, if found acceptable, will be immediately published online. Suggested articles are, of course, welcome. Feel encouraged to think about additional topics that we overlooked the first time around, and to suggest colleagues (including yourself!) who will want to write them. Interested new authors should contact the editor in chief, Stephen Lerman, at lermans@lsbu.ac.uk, for more specific instructions.
  engineering in stem strand: STEM Careers Paul Greer, 2017-10-13 Interested in an exciting STEM career but not sure what type of jobs are available and how to get started on your career journey? You've come to the right place. This friendly guide will help you decide whether a STEM-related career might be right for you and, if so, how to explore the options and put yourself in the best possible position to secure your dream job. Complete with unique insider inside from STEM professionals and inspiring stories about STEM pioneers, inside you will find: A wealth of job ideas, from the well-known to the less well-known Details of possible entry routes and required qualifications - both academic and vocational, from GCSEs to degrees and BTECs to apprenticeships A listing of the major employers and their recruitment practices Practical advice on how to find work experience, apply for jobs, build STEM skills and find further information A dedicated chapter covering women in STEM and the ever-improving job prospects Written in step-by-step chapters, and giving you everything you need to know to plan for success in a STEM career, this is your must-read guide.
  engineering in stem strand: Handbook of Research on STEM Education Carla C. Johnson, Margaret J. Mohr-Schroeder, Tamara J. Moore, Lyn D. English, 2020-04-27 The Handbook of Research on STEM Education represents a groundbreaking and comprehensive synthesis of research and presentation of policy within the realm of science, technology, engineering, and mathematics (STEM) education. What distinguishes this Handbook from others is the nature of integration of the disciplines that is the founding premise for the work – all chapters in this book speak directly to the integration of STEM, rather than discussion of research within the individual content areas. The Handbook of Research on STEM Education explores the most pressing areas of STEM within an international context. Divided into six sections, the authors cover topics including: the nature of STEM, STEM learning, STEM pedagogy, curriculum and assessment, critical issues in STEM, STEM teacher education, and STEM policy and reform. The Handbook utilizes the lens of equity and access by focusing on STEM literacy, early childhood STEM, learners with disabilities, informal STEM, socio-scientific issues, race-related factors, gender equity, cultural-relevancy, and parental involvement. Additionally, discussion of STEM education policy in a variety of countries is included, as well as a focus on engaging business/industry and teachers in advocacy for STEM education. The Handbook’s 37 chapters provide a deep and meaningful landscape of the implementation of STEM over the past two decades. As such, the findings that are presented within provide the reader with clear directions for future research into effective practice and supports for integrated STEM, which are grounded in the literature to date.
  engineering in stem strand: STEM Project-Based Learning Robert M. Capraro, Mary Margaret Capraro, James R. Morgan, 2013-04-20 This second edition of Project-Based Learning (PBL) presents an original approach to Science, Technology, Engineering and Mathematics (STEM) centric PBL. We define PBL as an “ill-defined task with a well-defined outcome,” which is consistent with our engineering design philosophy and the accountability highlighted in a standards-based environment. This model emphasizes a backward design that is initiated by well-defined outcomes, tied to local, state, or national standard that provide teachers with a framework guiding students’ design, solving, or completion of ill-defined tasks. This book was designed for middle and secondary teachers who want to improve engagement and provide contextualized learning for their students. However, the nature and scope of the content covered in the 14 chapters are appropriate for preservice teachers as well as for advanced graduate method courses. New to this edition is revised and expanded coverage of STEM PBL, including implementing STEM PBL with English Language Learners and the use of technology in PBL. The book also includes many new teacher-friendly forms, such as advanced organizers, team contracts for STEM PBL, and rubrics for assessing PBL in a larger format.
  engineering in stem strand: Solving the Equation , 2015 The book focuses on the underrepresentation of women in engineering and computing and provides practical ideas for educators and employers seeking to foster gender diversity. From new ways of conceptualizing the fields for beginning students to good management practices, the report recommends large and small actions that can add up to real change.
  engineering in stem strand: Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices Christina V. Schwarz, Cynthia Passmore, Brian J. Reiser , 2017-01-31 When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.
  engineering in stem strand: Pedagogical Content Knowledge in STEM Stephen Miles Uzzo, Sherryl Browne Graves, Erin Shay, Marisa Harford, Robert Thompson, 2018-10-25 This volume represents both recent research in pedagogical content knowledge (PCK) in science, technology, engineering and math (STEM), as well as emerging innovations in how PCK is applied in practice. The notion of “research to practice” is critical to validating how effectively PCK works within the clinic and how it can be used to improve STEM learning. ​As the need for more effective educational approaches in STEM grows, the importance of developing, identifying, and validating effective practices and practitioner competencies are needed. This book covers a wide range of topics in PCK in different school levels (middle school, college teacher training, teacher professional development), and different environments (museums, rural). The contributors believe that vital to successful STEM education practice is recognition that STEM domains require both specialized domain knowledge as well as specialized pedagogical approaches. The authors of this work were chosen because of their extensive fieldwork in PCK research and practice, making this volume valuable to furthering how PCK is used to enlighten the understanding of learning, as well as providing practical instruction. This text helps STEM practitioners, researchers, and decision-makers further their interest in more effective STEM education practice, and raises new questions about STEM learning.
  engineering in stem strand: The Case for STEM Education Rodger W. Bybee, 2013 If you are interested in STEM education, policies, programs or practices, or you work on STEM in some capacity at any level, The case for STEM education will prove to be valuable reading. Author Rodger W. Bybee has written this book to inspire individuals in leadership roles to better understand and take action on STEM initiatives. The book's 10 chapters accomplish several tasks: Put STEM in context by outlining the challenges facing STEM education, drawing lessons from the Sputnik moment of the 1950s and 1960s, and contrasting contemporary STEM with other education reforms; Explore appropriate roles for the federal government, as well as states, districts, and individual schools; Offer several ideas and recommendations you can use to develop action plans for STEM. With an emphasis on both thinking and acting, The case for STEM education is a must-read for leaders at all levels: national and state policy makers, state-level educators responsible for STEM initiatives, college and university faculty who educate future STEM teachers, local administrators who make decisions about district and school programs, and teachers who represent STEM disciplines. - Back cover.
  engineering in stem strand: Teaching and Learning STEM Richard M. Felder, Rebecca Brent, 2024-03-19 The widely used STEM education book, updated Teaching and Learning STEM: A Practical Guide covers teaching and learning issues unique to teaching in the science, technology, engineering, and math (STEM) disciplines. Secondary and postsecondary instructors in STEM areas need to master specific skills, such as teaching problem-solving, which are not regularly addressed in other teaching and learning books. This book fills the gap, addressing, topics like learning objectives, course design, choosing a text, effective instruction, active learning, teaching with technology, and assessment—all from a STEM perspective. You’ll also gain the knowledge to implement learner-centered instruction, which has been shown to improve learning outcomes across disciplines. For this edition, chapters have been updated to reflect recent cognitive science and empirical educational research findings that inform STEM pedagogy. You’ll also find a new section on actively engaging students in synchronous and asynchronous online courses, and content has been substantially revised to reflect recent developments in instructional technology and online course development and delivery. Plan and deliver lessons that actively engage students—in person or online Assess students’ progress and help ensure retention of all concepts learned Help students develop skills in problem-solving, self-directed learning, critical thinking, teamwork, and communication Meet the learning needs of STEM students with diverse backgrounds and identities The strategies presented in Teaching and Learning STEM don’t require revolutionary time-intensive changes in your teaching, but rather a gradual integration of traditional and new methods. The result will be a marked improvement in your teaching and your students’ learning.
  engineering in stem strand: Critical, Transdisciplinary and Embodied Approaches in STEM Education Pratim Sengupta, Marie-Claire Shanahan, Beaumie Kim, 2019-12-16 Over the past decade, integrated STEM education research has emerged as an international concern, creating around it an imperative for technological and disciplinary innovation and a global resurgence of interest in teaching and learning to code at the K-16 levels. At the same time, issues of democratization, equity, power and access, including recent decolonizing efforts in public education, are also beginning to be acknowledged as legitimate issues in STEM education. Taking a reflexive approach to the intersection of these concerns, this book presents a collection of papers making new theoretical advances addressing two broad themes: Transdisciplinary Approaches in STEM Education and Bodies, Hegemony and Decolonization in STEM Education. Within each theme, praxis is of central concern including analyses of teaching and learning that re-imagines disciplinary boundaries and domains, the relationship between Art and STEM, and the design of learning technologies, spaces and environments. In addition to graduate research seminars at the Masters and PhD levels in Learning Sciences, Science Education, Educational Technology and STEM education, this book could also serve as a textbook for graduate and pre-service teacher education courses.
  engineering in stem strand: Understanding the Educational and Career Pathways of Engineers National Academy of Engineering, Committee on Understanding the Engineering Education-Workforce Continuum, 2019-01-26 Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.
  engineering in stem strand: She Engineers Stephanie Slocum, 2018-01-19 Career success guide for female engineers.
  engineering in stem strand: My First 100 Art Words Chris Ferrie, 2020-04-07 Chris Ferrie fans will love this perfect educational art book for babies and toddlers featuring essential STEAM words from the #1 Science author! Babies and toddlers are curious and ready to learn! Introduce them to art words that go beyond the basics with this first 100 words baby board book. From painting to photography, from music to theater, from literature to history and more, this is the bright and simple introduction to the smart words every budding scholar needs! Surprise your special little one at birthdays, baby showers, holidays, and beyond with the amazing opportunity to discover with this baby and toddler learning book! My First 100 Art Words makes a wonderful addition to many other gifts you may be searching for, such as baby first birthday gifts for girls and boys, early development toys for babies, baby learning games, gift sets for babies and toddlers, and more!
  engineering in stem strand: Integrated Approaches to STEM Education Judy Anderson, Yeping Li, 2020-12-23 This book provides a platform for international scholars to share evidence for effective practices in integrated STEM education and contributes to the theoretical and practical knowledge gained from the diversity of approaches. Many publications on STEM education focus on one or two of the separate STEM disciplines without considering the potential for delivering STEM curriculum as an integrated approach.This publication analyzes the efficacy of an integrated STEM curriculum and instruction, providing evidence to examine and support various integrations. The volume focuses on the problems seen by academics working in the fields of science, technology, engineering and mathematics (STEM) and provides valuable, high quality research outcomes and a set of valued practices which have demonstrated their use and viability to improve the quality of integrated STEM education.
  engineering in stem strand: Tech Tally National Research Council, National Academy of Engineering, Committee on Assessing Technological Literacy, 2006-07-27 In a broad sense, technology is any modification of the natural world made to fulfill human needs or desires. Although people tend to focus on the most recent technological inventions, technology includes a myriad of devices and systems that profoundly affect everyone in modern society. Technology is pervasive; an informed citizenship needs to know what technology is, how it works, how it is created, how it shapes our society, and how society influences technological development. This understanding depends in large part on an individual level of technological literacy. Tech Tally: Approaches to Assessing Technological Literacy determines the most viable approaches to assessing technological literacy for students, teachers, and out-of-school adults. The book examines opportunities and obstacles to developing scientifically valid and broadly applicable assessment instruments for technological literacy in the three target populations. The book offers findings and 12 related recommendations that address five critical areas: instrument development; research on learning; computer-based assessment methods, framework development, and public perceptions of technology. This book will be of special interest to individuals and groups promoting technological literacy in the United States, education and government policy makers in federal and state agencies, as well as the education research community.
  engineering in stem strand: Teaching STEM to First Generation College Students Gail Horowitz, 2019-03-01 Do you ever feel like more and more of your students come to your classroom not knowing how to study or what to do in order to be successful in your class? Some students come to college knowing the ropes, knowing what it takes to be successful as STEM students. But many do not. Research shows that students who are the first-generation in their family to attend or complete college are likely to arrive at your classroom not knowing what it takes to be successful. And data shows that more first-generation students are likely to be arriving on your doorstep in the near future. What can you do to help these students be successful? This book can provide you with some research based methods that are quick, easy, and effortless. These are steps that you can take to help first-generation college students succeed without having to change the way you teach. Why put in this effort in the first place? The payoff is truly worth it. First-generation college students are frequently low-income students and from ethnic groups underrepresented in STEM. With a little effort, you can enhance the retention of underrepresented groups in your discipline, at your institution and play a role in national efforts to enhance diversity in STEM. This book provides an excellent description of dealing with immigrant and first generation college STEM students whose socioeconomic backgrounds often hinder them from reaching their full potential. The text touches on various aspects of student, faculty and mentor interaction that will lead to the exploitation of the student natural talents and provide life changing outcomes. ~ Paris Svoronos, Ph.D. Queensborough Community College of CUNY Gail Horowitz’s new book Teaching STEM to First Generation College Students is a timely and important resource to improve the success of college students who come from families with little or no experience in the US higher education system. “First-gens” are a growing population whose academic success is important to both the institutions they attend and our nation’s economy. Dr. Horowitz, an experienced chemistry educator, describes in detail the challenges first-gens face in historically difficult STEM classes. In doing so, she is honest but also optimistic. First-gens encounter difficulty not merely with the technical subject matter they may have been poorly prepared for in high school, but also with their own wrong-headed beliefs about how to study and where to find help on campus. At the same time, Horowitz is also highly respectful of the strengths that many first-gens bring to college, strengths often under the radar of instructors who may only see inexplicable behaviors they attribute to first-gens being clueless, unmotivated, or irresponsible. Horowitz provides an excellent review of constructs from psychology about students’ and teachers’ beliefs about academic success and failure, demonstrating that first gens are too often tripped by self-defeating and often incorrect beliefs about their legitimacy as college students and what it takes to pass difficult STEM courses. These, she explains, fuel first-gen students’ fear about revealing their ignorance and illegitimacy as college students. With clear-eyed and experienced-based optimism about techniques that help first-gens succeed, she then gives excellent, specific suggestions for faculty, graduate teaching assistants, and the students themselves to help first-gens learn to “do” STEM courses and college successfully. This is an important and highly-recommended book, a gift of honesty and hope, by an experienced STEM instructor who clearly cares deeply about first-gen students and their college experience. ~ Dr. Louise Hainline CUNY - Brooklyn College Director, Center for Achievement in Science Education (CASE) Director of NYS Collegiate Science and Technology Entry Program (CSTEP) Director of NIH Minority Access to Research Careers (MARC) Director, NSF Improving Undergraduate STEM Education (IUSE) Peer-Assisted Team Research program Director, Brooklyn College subcontract, NSF Institutional Research and Academic Career Development Awards (IRACDA) to SUNY Stony Brook As the college population becomes more diverse, STEM instructors have a responsibility to cultivate the success of all students. In this important and engaging book, Gail Horowitz provides a valuable resource for understanding the educational experiences of first-generation students and why they often struggle in STEM courses. The author persuasively conveys two important insights. First, that first-generation students can achieve success in STEM courses by becoming self-regulated learners. Second, that college faculty and graduate instructors can easily introduce effective learning strategies into their courses. These arguments are supported by extensive references to the research literature, which provide a wealth of additional resources. Just as important, however, is the deep humanity that the author brings to her subject—a sincere belief that our classrooms and colleges are made better by the aspirations, resilience, and experiences of first-generation students. ~ Dr. Trace Jordan New York University G. Horowitz’s book should be required reading for both teachers and students. It provides valuable insights into the behaviors and coping mechanisms of not only many first-generation college students, but also continuing generation students who struggle with STEM coursework. Recognizing these behaviors and mindsets is the first step towards becoming a better educator. ~ Leda Lee, M.S. Brooklyn College
  engineering in stem strand: Teaching STEM in the Secondary School Frank Banks, David Barlex, 2020-12-29 considers what the STEM subjects contribute separately to the curriculum and how they relate to each other in the wider education of secondary school students describes and evaluates different curriculum models for STEM suggests ways in which a critical approach to the pedagogy of the classroom, laboratory and workshop can support and encourage all pupils to engage fully in STEM addresses the practicalities of introducing, organising and sustaining STEM-related activities in the secondary school looks to ways schools can manage and sustain STEM approaches in the long-term
  engineering in stem strand: Standards for K-12 Engineering Education? National Research Council, Committee on Standards for K-12 Engineering Education, 2010-10-28 The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education-science, technology, and mathematic-but not for engineering. To date, a small but growing number of K-12 students are being exposed to engineering-related materials, and limited but intriguing evidence suggests that engineering education can stimulate interest and improve learning in mathematics and science as well as improve understanding of engineering and technology. Given this background, a reasonable question is whether standards would improve the quality and increase the amount of teaching and learning of engineering in K-12 education. The book concludes that, although it is theoretically possible to develop standards for K-12 engineering education, it would be extremely difficult to ensure their usefulness and effective implementation. This conclusion is supported by the following findings: (1) there is relatively limited experience with K-12 engineering education in U.S. elementary and secondary schools, (2) there is not at present a critical mass of teachers qualified to deliver engineering instruction, (3) evidence regarding the impact of standards-based educational reforms on student learning in other subjects, such as mathematics and science, is inconclusive, and (4) there are significant barriers to introducing stand-alone standards for an entirely new content area in a curriculum already burdened with learning goals in more established domains of study.
  engineering in stem strand: Gender and Information Technology: Moving Beyond Access to Co-Create Global Partnership Kirk, Mary, 2008-09-30 This book explores the decline in female involvement in technology and other discrimination related to the industry--Provided by publisher.
  engineering in stem strand: Tap, Click, Read Lisa Guernsey, Michael H. Levine, 2015-08-14 A guide to promoting literacy in the digital age With young children gaining access to a dizzying array of games, videos, and other digital media, will they ever learn to read? The answer is yes—if they are surrounded by adults who know how to help and if they are introduced to media designed to promote literacy, instead of undermining it. Tap, Click, Read gives educators and parents the tools and information they need to help children grow into strong, passionate readers who are skilled at using media and technology of all kinds—print, digital, and everything in between. In Tap, Click, Read authors Lisa Guernsey and Michael H. Levine envision a future that is human-centered first and tech-assisted second. They document how educators and parents can lead a new path to a place they call 'Readialand'—a literacy-rich world that marries reading and digital media to bring knowledge, skills, and critical thinking to all of our children. This approach is driven by the urgent need for low-income children and parents to have access to the same 21st-century literacy opportunities already at the fingertips of today's affluent families.With stories from homes, classrooms and cutting edge tech labs, plus accessible translation of new research and compelling videos, Guernsey and Levine help educators, parents, and America's leaders tackle the questions that arise as digital media plays a larger and larger role in children's lives, starting in their very first years of life. Tap, Click, Read includes an analysis of the exploding app marketplace and provides useful information on new review sites and valuable curation tools. It shows what to avoid and what to demand in today's apps and e-books—as well as what to seek in community preschools, elementary schools and libraries. Peppered with the latest research from fields as diverse as neuroscience and behavioral economics and richly documented examples of best practices from schools and early childhood programs around the country, Tap, Click, Read will show you how to: Promote the adult-child interactions that help kids grow into strong readers Learn how to use digital media to build a foundation for reading and success Discover new tools that open up avenues for creativity, critical thinking, and knowledge-building that today's children need The book's accompanying website keeps you updated on new research and provides vital resources to help parents, schools and community organizations.
  engineering in stem strand: Changing the Conversation National Academy of Engineering, Committee on Public Understanding of Engineering Messages, 2008-06-10 Can the United States continue to lead the world in innovation? The answer may hinge in part on how well the public understands engineering, a key component of the 'innovation engine'. A related concern is how to encourage young people-particularly girls and under-represented minorities-to consider engineering as a career option. Changing the Conversation provides actionable strategies and market-tested messages for presenting a richer, more positive image of engineering. This book presents and discusses in detail market research about what the public finds most appealing about engineering-as well as what turns the public off. Changing the Conversation is a vital tool for improving the public image of engineering and outreach efforts related to engineering. It will be used by engineers in professional and academic settings including informal learning environments (such as museums and science centers), engineering schools, national engineering societies, technology-based corporations that support education and other outreach to schools and communities, and federal and state agencies and labs that do or promote engineering, technology, and science.
  engineering in stem strand: Epistemic Fluency and Professional Education Lina Markauskaite, Peter Goodyear, 2016-09-21 This book, by combining sociocultural, material, cognitive and embodied perspectives on human knowing, offers a new and powerful conceptualisation of epistemic fluency – a capacity that underpins knowledgeable professional action and innovation. Using results from empirical studies of professional education programs, the book sheds light on practical ways in which the development of epistemic fluency can be recognised and supported - in higher education and in the transition to work. The book provides a broader and deeper conception of epistemic fluency than previously available in the literature. Epistemic fluency involves a set of capabilities that allow people to recognize and participate in different ways of knowing. Such people are adept at combining different kinds of specialised and context-dependent knowledge and at reconfiguring their work environment to see problems and solutions anew. In practical terms, the book addresses the following kinds of questions. What does it take to be a productive member of a multidisciplinary team working on a complex problem? What enables a person to integrate different types and fields of knowledge, indeed different ways of knowing, in order to make some well-founded decisions and take actions in the world? What personal knowledge resources are entailed in analysing a problem and describing an innovative solution, such that the innovation can be shared in an organization or professional community? How do people get better at these things; and how can teachers in higher education help students develop these valued capacities? The answers to these questions are central to a thorough understanding of what it means to become an effective knowledge worker and resourceful professional.
  engineering in stem strand: Optimized C++ Kurt Guntheroth, 2016-04-27 In today’s fast and competitive world, a program’s performance is just as important to customers as the features it provides. This practical guide teaches developers performance-tuning principles that enable optimization in C++. You’ll learn how to make code that already embodies best practices of C++ design run faster and consume fewer resources on any computer—whether it’s a watch, phone, workstation, supercomputer, or globe-spanning network of servers. Author Kurt Guntheroth provides several running examples that demonstrate how to apply these principles incrementally to improve existing code so it meets customer requirements for responsiveness and throughput. The advice in this book will prove itself the first time you hear a colleague exclaim, “Wow, that was fast. Who fixed something?” Locate performance hot spots using the profiler and software timers Learn to perform repeatable experiments to measure performance of code changes Optimize use of dynamically allocated variables Improve performance of hot loops and functions Speed up string handling functions Recognize efficient algorithms and optimization patterns Learn the strengths—and weaknesses—of C++ container classes View searching and sorting through an optimizer’s eye Make efficient use of C++ streaming I/O functions Use C++ thread-based concurrency features effectively
  engineering in stem strand: Rising Above the Gathering Storm Institute of Medicine, National Academy of Engineering, National Academy of Sciences, Committee on Science, Engineering, and Public Policy, Committee on Prospering in the Global Economy of the 21st Century: An Agenda for American Science and Technology, 2007-03-08 In a world where advanced knowledge is widespread and low-cost labor is readily available, U.S. advantages in the marketplace and in science and technology have begun to erode. A comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas. This congressionally requested report by a pre-eminent committee makes four recommendations along with 20 implementation actions that federal policy-makers should take to create high-quality jobs and focus new science and technology efforts on meeting the nation's needs, especially in the area of clean, affordable energy: 1) Increase America's talent pool by vastly improving K-12 mathematics and science education; 2) Sustain and strengthen the nation's commitment to long-term basic research; 3) Develop, recruit, and retain top students, scientists, and engineers from both the U.S. and abroad; and 4) Ensure that the United States is the premier place in the world for innovation. Some actions will involve changing existing laws, while others will require financial support that would come from reallocating existing budgets or increasing them. Rising Above the Gathering Storm will be of great interest to federal and state government agencies, educators and schools, public decision makers, research sponsors, regulatory analysts, and scholars.
The effect of age on mapping auditory icons to visual icons for ...
Oct 1, 1996 · This research explored the abilities of subjects in grade 1 (6–7 years old) and grade 3 (8–9 years old) to identify auditory icons that are commonly introduced in software …

Toward establishing a link between psychomotor task complexity …
Oct 1, 1996 · The objective of this research is to propose and validate a link between an existing information processing model for psychomotor tasks and a comprehensive characterization of …

Engineering | Journal | ScienceDirect.com by Elsevier
The official journal of the Chinese Academy of Engineering and Higher Education Press. Engineering is an international open-access journal that was launched by the Chinese …

Pickering stabilization of double emulsions: Basic concepts, …
Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts …

Engineering Structures | Journal | ScienceDirect.com by Elsevier
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. …

Engineering Failure Analysis | Journal - ScienceDirect
Published in Affiliation with the European Structural Integrity Society. The Engineering Failure Analysis journal provides an essential reference for analysing and preventing engineering …

Engineering Geology | Journal | ScienceDirect.com by Elsevier
Engineering Geology is an international interdisciplinary journal bridging the fields of the earth sciences and engineering, particularly geological and geotechnical engineering.The focus of …

Engineering Applications of Artificial Intelligence | Journal ...
A journal of IFAC, the International Federation of Automatic Control Artificial Intelligence (AI) is playing a major role in the fourth industrial revolution and we are seeing a lot of evolution in …

High-Entropy Approach vs. Traditional Doping Strategy for …
Jun 1, 2025 · The traditional doping strategy has emerged as an effective method for addressing challenges such as irreversible phase transitions and poor cycling s…

Food Hydrocolloids | Vol 168, December 2025 - ScienceDirect
Read the latest articles of Food Hydrocolloids at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature

The effect of age on mapping auditory icons to visual icons for ...
Oct 1, 1996 · This research explored the abilities of subjects in grade 1 (6–7 years old) and grade 3 (8–9 years old) to identify auditory icons that are commonly introduced in software …

Toward establishing a link between psychomotor task complexity …
Oct 1, 1996 · The objective of this research is to propose and validate a link between an existing information processing model for psychomotor tasks and a comprehensive characterization of …

Engineering | Journal | ScienceDirect.com by Elsevier
The official journal of the Chinese Academy of Engineering and Higher Education Press. Engineering is an international open-access journal that was launched by the Chinese …

Pickering stabilization of double emulsions: Basic concepts, …
Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts …

Engineering Structures | Journal | ScienceDirect.com by Elsevier
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. …

Engineering Failure Analysis | Journal - ScienceDirect
Published in Affiliation with the European Structural Integrity Society. The Engineering Failure Analysis journal provides an essential reference for analysing and preventing engineering …

Engineering Geology | Journal | ScienceDirect.com by Elsevier
Engineering Geology is an international interdisciplinary journal bridging the fields of the earth sciences and engineering, particularly geological and geotechnical engineering.The focus of …

Engineering Applications of Artificial Intelligence | Journal ...
A journal of IFAC, the International Federation of Automatic Control Artificial Intelligence (AI) is playing a major role in the fourth industrial revolution and we are seeing a lot of evolution in …

High-Entropy Approach vs. Traditional Doping Strategy for …
Jun 1, 2025 · The traditional doping strategy has emerged as an effective method for addressing challenges such as irreversible phase transitions and poor cycling s…

Food Hydrocolloids | Vol 168, December 2025 - ScienceDirect
Read the latest articles of Food Hydrocolloids at ScienceDirect.com, Elsevier’s leading platform of peer-reviewed scholarly literature