Advertisement
enterprise cloud data management: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
enterprise cloud data management: In-Memory Data Management Hasso Plattner, Alexander Zeier, 2011-03-08 In the last 50 years the world has been completely transformed through the use of IT. We have now reached a new inflection point. Here we present, for the first time, how in-memory computing is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Analytical data resides in warehouses, synchronized periodically with transactional systems. This separation makes flexible, real-time reporting on current data impossible. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. We describe techniques that allow analytical and transactional processing at the speed of thought and enable new ways of doing business. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes by leveraging in-memory computing. |
enterprise cloud data management: Data Management at Scale Piethein Strengholt, 2020-07-29 As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata |
enterprise cloud data management: Enterprise Cloud Strategy Barry Briggs, Eduardo Kassner, 2016-01-07 How do you start? How should you build a plan for cloud migration for your entire portfolio? How will your organization be affected by these changes? This book, based on real-world cloud experiences by enterprise IT teams, seeks to provide the answers to these questions. Here, you’ll see what makes the cloud so compelling to enterprises; with which applications you should start your cloud journey; how your organization will change, and how skill sets will evolve; how to measure progress; how to think about security, compliance, and business buy-in; and how to exploit the ever-growing feature set that the cloud offers to gain strategic and competitive advantage. |
enterprise cloud data management: The Enterprise Cloud James Bond, 2015-05-19 Despite the buzz surrounding the cloud computing, only a small percentage of organizations have actually deployed this new style of IT—so far. If you're planning your long-term cloud strategy, this practical book provides insider knowledge and actionable real-world lessons regarding planning, design, operations, security, and application transformation. This book teaches business and technology managers how to transition their organization's traditional IT to cloud computing. Rather than yet another book trying to sell or convince readers on the benefits of clouds, this book provides guidance, lessons learned, and best practices on how to design, deploy, operate, and secure an enterprise cloud based on real-world experience. Author James Bond provides useful guidance and best-practice checklists based on his field experience with real customers and cloud providers. You'll view cloud services from the perspective of a consumer and as an owner/operator of an enterprise private or hybrid cloud, and learn valuable lessons from successful and less-than-successful organization use-case scenarios. This is the information every CIO needs in order to make the business and technical decisions to finally execute on their journey to cloud computing. Get updated trends and definitions in cloud computing, deployment models, and for building or buying cloud services Discover challenges in cloud operations and management not foreseen by early adopters Use real-world lessons to plan and build an enterprise private or hybrid cloud Learn how to assess, port, and migrate legacy applications to the cloud Identify security threats and vulnerabilities unique to the cloud Employ a cloud management system for your enterprise (private or multi-provider hybrid) cloud ecosystem Understand the challenges for becoming an IT service broker leveraging the power of the cloud |
enterprise cloud data management: The Informed Company Dave Fowler, Matthew C. David, 2021-10-26 Learn how to manage a modern data stack and get the most out of data in your organization! Thanks to the emergence of new technologies and the explosion of data in recent years, we need new practices for managing and getting value out of data. In the modern, data driven competitive landscape the best guess approach—reading blog posts here and there and patching together data practices without any real visibility—is no longer going to hack it. The Informed Company provides definitive direction on how best to leverage the modern data stack, including cloud computing, columnar storage, cloud ETL tools, and cloud BI tools. You'll learn how to work with Agile methods and set up processes that's right for your company to use your data as a key weapon for your success . . . You'll discover best practices for every stage, from querying production databases at a small startup all the way to setting up data marts for different business lines of an enterprise. In their work at Chartio, authors Fowler and David have learned that most businesspeople are almost completely self-taught when it comes to data. If they are using resources, those resources are outdated, so they're missing out on the latest cloud technologies and advances in data analytics. This book will firm up your understanding of data and bring you into the present with knowledge around what works and what doesn't. Discover the data stack strategies that are working for today's successful small, medium, and enterprise companies Learn the different Agile stages of data organization, and the right one for your team Learn how to maintain Data Lakes and Data Warehouses for effective, accessible data storage Gain the knowledge you need to architect Data Warehouses and Data Marts Understand your business's level of data sophistication and the steps you can take to get to level up your data The Informed Company is the definitive data book for anyone who wants to work faster and more nimbly, armed with actionable decision-making data. |
enterprise cloud data management: Transforming Enterprise Cloud Services William Y Chang, Hosame Abu-Amara, Jessica Feng Sanford, 2010-11-15 The broad scope of Cloud Computing is creating a technology, business, sociolo- cal, and economic renaissance. It delivers the promise of making services available quickly with rather little effort. Cloud Computing allows almost anyone, anywhere, at anytime to interact with these service offerings. Cloud Computing creates a unique opportunity for its users that allows anyone with an idea to have a chance to deliver it to a mass market base. As Cloud Computing continues to evolve and penetrate different industries, it is inevitable that the scope and definition of Cloud Computing becomes very subjective, based on providers’ and customers’ persp- tive of applications. For instance, Information Technology (IT) professionals p- ceive a Cloud as an unlimited, on-demand, flexible computing fabric that is always available to support their needs. Cloud users experience Cloud services as virtual, off-premise applications provided by Cloud service providers. To an end user, a p- vider offering a set of services or applications in the Cloud can manage these off- ings remotely. Despite these discrepancies, there is a general consensus that Cloud Computing includes technology that uses the Internet and collaborated servers to integrate data, applications, and computing resources. With proper Cloud access, such technology allows consumers and businesses to access their personal files on any computer without having to install special tools. Cloud Computing facilitates efficient operations and management of comp- ing technologies by federating storage, memory, processing, and bandwidth. |
enterprise cloud data management: In-Memory Data Management Hasso Plattner, Alexander Zeier, 2012-04-17 In the last fifty years the world has been completely transformed through the use of IT. We have now reached a new inflection point. This book presents, for the first time, how in-memory data management is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. This book provides the technical foundation for processing combined transactional and analytical operations in the same database. In the year since we published the first edition of this book, the performance gains enabled by the use of in-memory technology in enterprise applications has truly marked an inflection point in the market. The new content in this second edition focuses on the development of these in-memory enterprise applications, showing how they leverage the capabilities of in-memory technology. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes. |
enterprise cloud data management: Ahead in the Cloud Stephen Orban, 2018-03-27 Cloud computing is the most significant technology development of our lifetimes. It has made countless new businesses possible and presents a massive opportunity for large enterprises to innovate like startups and retire decades of technical debt. But making the most of the cloud requires much more from enterprises than just a technology change. Stephen Orban led Dow Jones's journey toward digital agility as their CIO and now leads AWS's Enterprise Strategy function, where he helps leaders from the largest companies in the world transform their businesses. As he demonstrates in this book, enterprises must re-train their people, evolve their processes, and transform their cultures as they move to the cloud. By bringing together his experiences and those of a number of business leaders, Orban shines a light on what works, what doesn't, and how enterprises can transform themselves using the cloud. |
enterprise cloud data management: Rise of the Data Cloud Frank Slootman, Steve Hamm, 2020-12-18 The rise of the Data Cloud is ushering in a new era of computing. The world’s digital data is mass migrating to the cloud, where it can be more effectively integrated, managed, and mobilized. The data cloud eliminates data siloes and enables data sharing with business partners, capitalizing on data network effects. It democratizes data analytics, making the most sophisticated data science tools accessible to organizations of all sizes. Data exchanges enable businesses to discover, explore, and easily purchase or sell data—opening up new revenue streams. Business leaders have long dreamed of data driving their organizations. Now, thanks to the Data Cloud, nothing stands in their way. |
enterprise cloud data management: Web-Scale Data Management for the Cloud Wolfgang Lehner, Kai-Uwe Sattler, 2013-04-06 The efficient management of a consistent and integrated database is a central task in modern IT and highly relevant for science and industry. Hardly any critical enterprise solution comes without any functionality for managing data in its different forms. Web-Scale Data Management for the Cloud addresses fundamental challenges posed by the need and desire to provide database functionality in the context of the Database as a Service (DBaaS) paradigm for database outsourcing. This book also discusses the motivation of the new paradigm of cloud computing, and its impact to data outsourcing and service-oriented computing in data-intensive applications. Techniques with respect to the support in the current cloud environments, major challenges, and future trends are covered in the last section of this book. A survey addressing the techniques and special requirements for building database services are provided in this book as well. |
enterprise cloud data management: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
enterprise cloud data management: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts. |
enterprise cloud data management: Agile Data Warehouse Design Lawrence Corr, Jim Stagnitto, 2011-11 Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino. |
enterprise cloud data management: Cloud Enterprise Architecture Pethuru Raj, 2012-10-24 Cloud Enterprise Architecture examines enterprise architecture (EA) in the context of the surging popularity of Cloud computing. It explains the different kinds of desired transformations the architectural blocks of EA undergo in light of this strategically significant convergence. Chapters cover each of the contributing architectures of EA—business, information, application, integration, security, and technology—illustrating the current and impending implications of the Cloud on each. Discussing the implications of the Cloud paradigm on EA, the book details the perceptible and positive changes that will affect EA design, governance, strategy, management, and sustenance. The author ties these topics together with chapters on Cloud integration and composition architecture. He also examines the Enterprise Cloud, Federated Clouds, and the vision to establish the InterCloud. Laying out a comprehensive strategy for planning and executing Cloud-inspired transformations, the book: Explains how the Cloud changes and affects enterprise architecture design, governance, strategy, management, and sustenance Presents helpful information on next-generation Cloud computing Describes additional architectural types such as enterprise-scale integration, security, management, and governance architectures This book is an ideal resource for enterprise architects, Cloud evangelists and enthusiasts, and Cloud application and service architects. Cloud center administrators, Cloud business executives, managers, and analysts will also find the book helpful and inspirational while formulating appropriate mechanisms and schemes for sound modernization and migration of traditional applications to Cloud infrastructures and platforms. |
enterprise cloud data management: Principles of Data Integration AnHai Doan, Alon Halevy, Zachary Ives, 2012-06-25 Principles of Data Integration is the first comprehensive textbook of data integration, covering theoretical principles and implementation issues as well as current challenges raised by the semantic web and cloud computing. The book offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand. Readers will also learn how to build their own algorithms and implement their own data integration application. Written by three of the most respected experts in the field, this book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. This text is an ideal resource for database practitioners in industry, including data warehouse engineers, database system designers, data architects/enterprise architects, database researchers, statisticians, and data analysts; students in data analytics and knowledge discovery; and other data professionals working at the R&D and implementation levels. - Offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand - Enables you to build your own algorithms and implement your own data integration applications |
enterprise cloud data management: The Enterprise Big Data Lake Alex Gorelik, 2019-02-21 The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries |
enterprise cloud data management: Database Cloud Storage Nitin Vengurlekar, Prasad Bagal, 2013-07-06 Implement a Centralized Cloud Storage Infrastructure with Oracle Automatic Storage Management Build and manage a scalable, highly available cloud storage solution. Filled with detailed examples and best practices, this Oracle Press guide explains how to set up a complete cloud-based storage system using Oracle Automatic Storage Management. Find out how to prepare hardware, build disk groups, efficiently allocate storage space, and handle security. Database Cloud Storage: The Essential Guide to Oracle Automatic Storage Management shows how to monitor your system, maximize throughput, and ensure consistency across servers and clusters. Set up and configure Oracle Automatic Storage Management Discover and manage disks and establish disk groups Create, clone, and administer Oracle databases Consolidate resources with Oracle Private Database Cloud Control access, encrypt files, and assign user privileges Integrate replication, file tagging, and automatic failover Employ pre-engineered private cloud database consolidation tools Check for data consistency and resync failed disks Code examples in the book are available for download |
enterprise cloud data management: IBM Cloud Pak for Data Hemanth Manda, Sriram Srinivasan, Deepak Rangarao, 2021-11-24 Build end-to-end AI solutions with IBM Cloud Pak for Data to operationalize AI on a secure platform based on cloud-native reliability, cost-effective multitenancy, and efficient resource management Key FeaturesExplore data virtualization by accessing data in real time without moving itUnify the data and AI experience with the integrated end-to-end platformExplore the AI life cycle and learn to build, experiment, and operationalize trusted AI at scaleBook Description Cloud Pak for Data is IBM's modern data and AI platform that includes strategic offerings from its data and AI portfolio delivered in a cloud-native fashion with the flexibility of deployment on any cloud. The platform offers a unique approach to addressing modern challenges with an integrated mix of proprietary, open-source, and third-party services. You'll begin by getting to grips with key concepts in modern data management and artificial intelligence (AI), reviewing real-life use cases, and developing an appreciation of the AI Ladder principle. Once you've gotten to grips with the basics, you will explore how Cloud Pak for Data helps in the elegant implementation of the AI Ladder practice to collect, organize, analyze, and infuse data and trustworthy AI across your business. As you advance, you'll discover the capabilities of the platform and extension services, including how they are packaged and priced. With the help of examples present throughout the book, you will gain a deep understanding of the platform, from its rich capabilities and technical architecture to its ecosystem and key go-to-market aspects. By the end of this IBM book, you'll be able to apply IBM Cloud Pak for Data's prescriptive practices and leverage its capabilities to build a trusted data foundation and accelerate AI adoption in your enterprise. What you will learnUnderstand the importance of digital transformations and the role of data and AI platformsGet to grips with data architecture and its relevance in driving AI adoption using IBM's AI LadderUnderstand Cloud Pak for Data, its value proposition, capabilities, and unique differentiatorsDelve into the pricing, packaging, key use cases, and competitors of Cloud Pak for DataUse the Cloud Pak for Data ecosystem with premium IBM and third-party servicesDiscover IBM's vibrant ecosystem of proprietary, open-source, and third-party offerings from over 35 ISVsWho this book is for This book is for data scientists, data stewards, developers, and data-focused business executives interested in learning about IBM's Cloud Pak for Data. Knowledge of technical concepts related to data science and familiarity with data analytics and AI initiatives at various levels of maturity are required to make the most of this book. |
enterprise cloud data management: Cloud Data Management Liang Zhao, Sherif Sakr, Anna Liu, Athman Bouguettaya, 2014-07-08 In practice, the design and architecture of a cloud varies among cloud providers. We present a generic evaluation framework for the performance, availability and reliability characteristics of various cloud platforms. We describe a generic benchmark architecture for cloud databases, specifically NoSQL database as a service. It measures the performance of replication delay and monetary cost. Service Level Agreements (SLA) represent the contract which captures the agreed upon guarantees between a service provider and its customers. The specifications of existing service level agreements (SLA) for cloud services are not designed to flexibly handle even relatively straightforward performance and technical requirements of consumer applications. We present a novel approach for SLA-based management of cloud-hosted databases from the consumer perspective and an end-to-end framework for consumer-centric SLA management of cloud-hosted databases. The framework facilitates adaptive and dynamic provisioning of the database tier of the software applications based on application-defined policies for satisfying their own SLA performance requirements, avoiding the cost of any SLA violation and controlling the monetary cost of the allocated computing resources. In this framework, the SLA of the consumer applications are declaratively defined in terms of goals which are subjected to a number of constraints that are specific to the application requirements. The framework continuously monitors the application-defined SLA and automatically triggers the execution of necessary corrective actions (scaling out/in the database tier) when required. The framework is database platform-agnostic, uses virtualization-based database replication mechanisms and requires zero source code changes of the cloud-hosted software applications. |
enterprise cloud data management: Enterprise Application Integration David S. Linthicum, 2000 Dealing with the concepts behind a vendor's products, this a guide for IT managers on how to ensure the IT infrastructure matches the need of the enterprise, and which procedures should be followed to ensure this happens. |
enterprise cloud data management: Design Patterns for Cloud Native Applications Kasun Indrasiri, Sriskandarajah Suhothayan, 2021-05-17 With the immense cost savings and scalability the cloud provides, the rationale for building cloud native applications is no longer in question. The real issue is how. With this practical guide, developers will learn about the most commonly used design patterns for building cloud native applications using APIs, data, events, and streams in both greenfield and brownfield development. You'll learn how to incrementally design, develop, and deploy large and effective cloud native applications that you can manage and maintain at scale with minimal cost, time, and effort. Authors Kasun Indrasiri and Sriskandarajah Suhothayan highlight use cases that effectively demonstrate the challenges you might encounter at each step. Learn the fundamentals of cloud native applications Explore key cloud native communication, connectivity, and composition patterns Learn decentralized data management techniques Use event-driven architecture to build distributed and scalable cloud native applications Explore the most commonly used patterns for API management and consumption Examine some of the tools and technologies you'll need for building cloud native systems |
enterprise cloud data management: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization. |
enterprise cloud data management: Rethinking Enterprise Storage Marc Farley, 2013-08-15 Use a Hybrid Cloud solution - combining cloud storage with on-premise storage - and help dramatically decrease costs while increasing scalability and agility. This book offers focused, concise insights on technical considerations, benefits, and tradeoffs, so you can begin planning for implementation. Explains, in both practical and strategic terms, how a new enterprise storage model can solve multiple challenges Delivers focused insights on architecture, access, backups, snapshots, data redundancy as a service, dedupes, capacity, data lifecycles, storage tiering, archiving, externalized blobs, storage consolidation, compression, bandwidth, and privacy and security planning The author is an expert for cloud storage technologies and is well known in the networking technologies community |
enterprise cloud data management: The Box Marc Levinson, 2016-04-05 In April 1956, a refitted oil tanker carried fifty-eight shipping containers from Newark to Houston. From that modest beginning, container shipping developed into a huge industry that reshaped manufacturing. But the container didn't just happen. Its adoption required huge sums of money, years of high-stakes bargaining, and delicate negotiation on standards. Now with a new chapter, The Box tells the dramatic story of how the drive and imagination of an iconoclastic entrepreneur turned containerization from an impractical idea into a phenomenon that transformed economic geography, slashed transportation costs, and made the boom in global trade possible. -- from back cover. |
enterprise cloud data management: Data Lakes For Dummies Alan R. Simon, 2021-07-14 Take a dive into data lakes “Data lakes” is the latest buzz word in the world of data storage, management, and analysis. Data Lakes For Dummies decodes and demystifies the concept and helps you get a straightforward answer the question: “What exactly is a data lake and do I need one for my business?” Written for an audience of technology decision makers tasked with keeping up with the latest and greatest data options, this book provides the perfect introductory survey of these novel and growing features of the information landscape. It explains how they can help your business, what they can (and can’t) achieve, and what you need to do to create the lake that best suits your particular needs. With a minimum of jargon, prolific tech author and business intelligence consultant Alan Simon explains how data lakes differ from other data storage paradigms. Once you’ve got the background picture, he maps out ways you can add a data lake to your business systems; migrate existing information and switch on the fresh data supply; clean up the product; and open channels to the best intelligence software for to interpreting what you’ve stored. Understand and build data lake architecture Store, clean, and synchronize new and existing data Compare the best data lake vendors Structure raw data and produce usable analytics Whatever your business, data lakes are going to form ever more prominent parts of the information universe every business should have access to. Dive into this book to start exploring the deep competitive advantage they make possible—and make sure your business isn’t left standing on the shore. |
enterprise cloud data management: To the Cloud: Cloud Powering an Enterprise Pankaj Arora, Raj Biyani, Salil Dave, 2012-03-07 This invaluable guide addresses the Why, What, and How of enterprise cloud adoption, leveraging a clear framework and proven best practices from Microsoft's own experience. “Great book. What’s particularly impressive is the outline of steps Microsoft itself is taking in its move to the cloud. Do as I do is always more powerful than do as I say.”—Al Ries, Coauthor, War in the Boardroom “This book takes on enterprise cloud adoption to a level I’ve not seen before—made even more elegant with its structured framework and crisp approach.”—Anthony D. Christie, CMO, Level 3 Communications, Former CTO/CIO, Global Crossing “A practical and timely guide that covers the entire journey to the cloud from an enterprise perspective, including business, technology, and organizational impact.”—Bart Luijten, CIO Corporate Functions & Corporate Technology, Philips “The cloud powers business solutions for building tomorrow’s enterprise and this book offers a simple, well-structured, and high-level process map for cloud adoption.”—Kris Gopalakrishnan, Executive Co-Chairman, Infosys Limited Cloud computing is full of tremendous opportunity, but is also riddled with hype and confusion. Business and technology leaders know the cloud is essential, but lack clarity and experience. To the Cloud cuts through the noise and addresses the Why, What, and How of enterprise cloud adoption. The book lays out a four-step framework leveraging the experience and best practices of Microsoft's own IT group. It provides end-to-end business and technology guidance, including how to analyze application portfolios to identify good cloud candidates, choose the right cloud models, consider architecture and security, and understand how shifting operations to the cloud affects budgeting and staffing. The book is applicable to all cloud platforms and providers, and debunks myths in its clear and concise style (e.g., real clouds are more than just web hosting, virtualization, or the Internet itself rebranded). It takes a balanced approach, addressing concerns and hybrid adoption scenarios alike. Leveraging the authors' proven expertise working for Microsoft's CIO on cloud migration and with cloud platform development teams, the book is supported by clear frameworks, graphics, tables, summaries, and checklists to provide a true practitioner’s guide to the cloud. In this book, you will learn how to Explore cloud computing to understand its promise and challenges Envision how cloud computing can transform your organization Enable your organization with the necessary resources and skills Execute the design, development, and operation of cloud workloads To the Cloud is an essential guide for IT professionals seeking to lower total cost of ownership, improve the return on IT investment of existing services, or help the business bring new products to market more quickly. |
enterprise cloud data management: NoSQL Distilled Pramod J. Sadalage, Martin Fowler, 2013 'NoSQL Distilled' is designed to provide you with enough background on how NoSQL databases work, so that you can choose the right data store without having to trawl the whole web to do it. It won't answer your questions definitively, but it should narrow down the range of options you have to consider. |
enterprise cloud data management: Building and Managing a Cloud Using Oracle Enterprise Manager 12c Madhup Gulati, Adeesh Fulay, Sudip Datta, 2013-01-23 Master Cloud Computing with Oracle Enterprise Manager 12c Gain organizational agility, foster innovation, and lower TCO by adopting a service-oriented, cloud-based IT solution. Building and Managing a Cloud Using Oracle Enterprise Manager 12c thoroughly explains how to architect, configure, and manage components of a public or private cloud lifecycle. Discover how to choose the right architecture, deploy applications, govern self-service provisioning, monitor users, and implement security. This Oracle Press guide features best practices and case studies from the authors’ experiences as Oracle product managers. Plan and deploy a flexible cloud infrastructure Configure Oracle Enterprise Manager 12c Self Service Portal Bundle applications using Oracle Virtual Assembly Builder Set up, manage, and monitor IaaS, PaaS, and DBaaS Meter usage and establish chargeback policies Work with large-scale clouds and enforce compliance Manage cloud service levels Diagnose and repair bottlenecks and faults |
enterprise cloud data management: Managing Data in Motion April Reeve, 2013-02-26 Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the data in motion in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and big data applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of Big Data |
enterprise cloud data management: Master Data Management for SaaS Applications Whei-Jen Chen, Bhavani Eshwar, Ramya Rajendiran, Shettigar Srinivas, Manjunath B Subramanian, Bharathi Venkatasubramanian, IBM Redbooks, 2014-10-19 Enterprises today understand the value of employing a master data management (MDM) solution for managing and governing mission critical information assets. chief data officers and chief information officers drive MDM initiatives with IBM® InfoSphere® Master Data Management to improve business results and operational efficiencies, which can help to lower costs and to reduce the risk of using untrusted master information in business process. Cloud computing introduces new considerations where enterprise IT architectures are extended beyond the corporate networks into the cloud. Many enterprises are now adopting turnkey business applications offered as software as a service (SaaS) solutions, such as customer relationship management (CRM), payroll processing, human resource management, and many more. However, in the context of MDM solutions, many organizations perceive risks in having these solutions deployed on the cloud. In some cases, organization are concerned with the legal restrictions of deploying solutions on the cloud, whereas in other cases organizations have policies and strategies in force that limit solution deployment on the cloud. Immaterial of what all the cases might be, industry trends point to a prediction that many extended enterprises will keep MDM solutions on premises and will want its integrations with SaaS applications, specifically customer and asset domains. This trend puts a key focus on an important component in the solution construct, that is, the cloud integration middleware and how it fits with hybrid cloud architectures that span on premises and cloud services. As this trend pans out, the on-premises MDM solution integration with SaaS applications will be the key pain point for the extended enterprise. This IBM Redbooks® publication provides guidance to chief data officers, chief information officers, MDM practitioners, integration architects, and others who are interested in the integration of IBM InfoSphere Master Data Management with SaaS applications. This book lays the background on how mastering and governance needs for SaaS applications is quite similar to what on-premises business applications would need. It draws the perspective for serving the on-premises application and the SaaS application with the same MDM hub. This book describes how IBM WebSphere® Cast Iron® Cloud Integration can serve as the de-facto cloud integration middleware to integrate the on-premises InfoSphere Master Data Management systems with any SaaS application by using Saleforce.com integration as an example. This book also covers aspects of handling bulk operations with IBM InfoSphere Information Server. After reading this book, you will have a good understanding about the considerations for on-premises InfoSphere Master Data Management integration with SaaS applications in general and Salesforce.com in particular. The MDM practitioners and integration architects will understand the deployable integrations patterns and, in general, will be able to effectively contribute to delivering strategies that involve building solutions in this area. Additionally, SaaS vendors and customers looking to build or implement SaaS solutions that might require trusted master information will be able to use this compilation to ensure that the right architecture is put together and adhered to as a set of standard integrations patterns with all the core building blocks is essential for the longevity of a solution in this space. |
enterprise cloud data management: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
enterprise cloud data management: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness. |
enterprise cloud data management: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development |
enterprise cloud data management: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh. |
enterprise cloud data management: Data Warehousing For Dummies Thomas C. Hammergren, 2009-04-13 Data warehousing is one of the hottest business topics, and there’s more to understanding data warehousing technologies than you might think. Find out the basics of data warehousing and how it facilitates data mining and business intelligence with Data Warehousing For Dummies, 2nd Edition. Data is probably your company’s most important asset, so your data warehouse should serve your needs. The fully updated Second Edition of Data Warehousing For Dummies helps you understand, develop, implement, and use data warehouses, and offers a sneak peek into their future. You’ll learn to: Analyze top-down and bottom-up data warehouse designs Understand the structure and technologies of data warehouses, operational data stores, and data marts Choose your project team and apply best development practices to your data warehousing projects Implement a data warehouse, step by step, and involve end-users in the process Review and upgrade existing data storage to make it serve your needs Comprehend OLAP, column-wise databases, hardware assisted databases, and middleware Use data mining intelligently and find what you need Make informed choices about consultants and data warehousing products Data Warehousing For Dummies, 2nd Edition also shows you how to involve users in the testing process and gain valuable feedback, what it takes to successfully manage a data warehouse project, and how to tell if your project is on track. You’ll find it’s the most useful source of data on the topic! |
enterprise cloud data management: Architecting Modern Data Platforms Jan Kunigk, Ian Buss, Paul Wilkinson, Lars George, 2018-12-05 There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability |
enterprise cloud data management: Smart Grid Technology Sudip Misra, Samaresh Bera, 2018-07-12 Discusses concepts of smart grid technologies, from the perspective of integration with cloud computing and data management approaches. |
enterprise cloud data management: Data as a Service Pushpak Sarkar, 2015-07-31 Data as a Service shows how organizations can leverage “data as a service” by providing real-life case studies on the various and innovative architectures and related patterns Comprehensive approach to introducing data as a service in any organization A reusable and flexible SOA based architecture framework Roadmap to introduce ‘big data as a service’ for potential clients Presents a thorough description of each component in the DaaS reference architecture so readers can implement solutions |
enterprise cloud data management: Enterprise Analytics Thomas H. Davenport, 2013 International Institute for Analytics--Dust jacket. |
New Enterprise Forum | Events
Jun 19, 2025 · Join our members and celebrate the accomplishments of the outstanding startup entrepreneurs being recognized by New Enterprise Forum. Best Showcase …
New Enterprise Forum
May 20, 2025 · New Enterprise Forum Since 1986, we’ve linked entrepreneurs to management expertise, potential joint venture partners, mentors, business services, capital, and …
Investors - New Enterprise Forum
By registering to the New Enterprise Forum’s private investor list, you will be provided access to business executive summaries from showcase presenters that have been …
New Enterprise Forum | News
Nov 1, 2024 · The New Enterprise Forum is carrying on its mission to support Michigan entrepreneurs, even as the state is afflicted with the COVID-19 pandemic. Since mid-March, …
New Enterprise Forum | Pitch Pit Competitions
Jan 16, 2025 · While the hallmark of New Enterprise Forum is our signature investor presentation pitch coaching, we also know that there are many early-stage companies that are …
New Enterprise Forum | Events
Jun 19, 2025 · Join our members and celebrate the accomplishments of the outstanding startup entrepreneurs being recognized by New Enterprise Forum. Best Showcase Presentations …
New Enterprise Forum
May 20, 2025 · New Enterprise Forum Since 1986, we’ve linked entrepreneurs to management expertise, potential joint venture partners, mentors, business services, capital, and other …
Investors - New Enterprise Forum
By registering to the New Enterprise Forum’s private investor list, you will be provided access to business executive summaries from showcase presenters that have been coached by NEF …
New Enterprise Forum | News
Nov 1, 2024 · The New Enterprise Forum is carrying on its mission to support Michigan entrepreneurs, even as the state is afflicted with the COVID-19 pandemic. Since mid-March, …
New Enterprise Forum | Pitch Pit Competitions
Jan 16, 2025 · While the hallmark of New Enterprise Forum is our signature investor presentation pitch coaching, we also know that there are many early-stage companies that are just starting …
Awards Celebration and Showcase Presentation - New …
Feb 15, 2024 · Join our members and celebrate the accomplishments of the outstanding startup entrepreneurs being recognized by New Enterprise Forum. NEF Startup Community …
New Enterprise Forum | About
Since 1986, New Enterprise Forum has had over 400 companies go through our investor pitch coaching process and we have helped hundreds more in other ways. Read the story of how …
New Enterprise Forum | Get Coached
New Enterprise Forum. 330 E Liberty St. Ann Arbor, MI 48104. Email info@newenterpriseforum.org. Connect ...
Pitch Pit and Showcase Presentation | New Enterprise Forum
Apr 17, 2025 · New Enterprise Forum. 330 E Liberty St. Ann Arbor, MI 48104. Email info@newenterpriseforum.org. Connect ...
The Michigan Startup Scene: Past, Present, and Future | New …
May 15, 2025 · New Enterprise Forum. 330 E Liberty St. Ann Arbor, MI 48104. Email info@newenterpriseforum.org. Connect ...