Advertisement
fundamentals of hydrogen safety engineering: Hydrogen Safety for Energy Applications Alexei Kotchourko, Thomas Jordan, 2022-03-25 Hydrogen Safety for Energy Applications: Engineering Design, Risk Assessment, and Codes and Standards presents different aspects of contemporary knowledge regarding the hazards, risks and safety connected with hydrogen systems. Sections cover the main hydrogen technologies and explore the scientific aspects of possible sources and consequences of accidental events that can occur when hydrogen is used, including in its vehicular applications. Risk assessment, as well as the safety measures/safety barriers applicable in such situations are also considered. Finally, a short survey concerning legal aspects is presented. - Provides factual material, such as models, correlations, tables, nomograms and formulas that can be used to perform evaluations and propose mitigation measures - Presents reference data and detailed descriptions and guidelines for contemporary risk assessment methodologies - Covers accident phenomena and consequences of accidents specific to hydrogen systems in a widely and applicable way for a wide variety of hydrogen activities |
fundamentals of hydrogen safety engineering: Hydrogen Safety Fotis Rigas, Paul Amyotte, 2012-07-09 Hydrogen Safety highlights physiological, physical, and chemical hazards associated with hydrogen production, storage, distribution, and use systems. It also examines potential accident scenarios that could occur with hydrogen use under certain conditions. The number of potential applications for hydrogen continues to grow—from cooling power station generators to widespread commercial use in hydrogen fuel-cell vehicles and other fuel-cell applications. However, this volatile substance poses unique challenges, including easy leakage, low ignition energy, a wide range of combustible fuel-air mixtures, buoyancy, and its ability to embrittle metals that are required to ensure safe operation. Focused on providing a balanced view of hydrogen safety—one that integrates principles from physical sciences, engineering, management, and social sciences—this book is organized to address questions associated with the hazards of hydrogen and the ensuing risk associated with its industrial and public use. What are the properties of hydrogen that can render it a hazardous substance? How have these hazards historically resulted in undesired incidents? How might these hazards arise in the storage of hydrogen and with its use in vehicular transportation? The authors address issues of inherently safer design, safety management systems, and safety culture. They highlight hydrogen storage facilities —which pose greater hazards because of the increased quantities stored and handled—and the dangers of using hydrogen as a fuel for transport. Presented experiments are included to verify computer simulations with the aid of computational fluid dynamics (CFD) of both gaseous and liquefied hydrogen. The book also provides an overview of the European Commission (EC) Network of Excellence for Hydrogen Safety (HySafe) and presents various case studies associated with hydrogen and constructional materials. It concludes with a brief look at future research requirements and current legal requirements for hydrogen safety. |
fundamentals of hydrogen safety engineering: Hydrogen Energy Engineering Kazunari Sasaki, Hai-Wen Li, Akari Hayashi, Junichiro Yamabe, Teppei Ogura, Stephen M. Lyth, 2016-09-07 This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers. |
fundamentals of hydrogen safety engineering: Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems Seyed Ehsan Hosseini, 2023-07-26 Fundamentals of Hydrogen Production and Utilization in Fuel Cell Systems provides a comprehensive overview of the complex and interdisciplinary issues surrounding the use of hydrogen fuel cells in the global transportation system. With a particular emphasis on the commercialization and implementation of hydrogen fuel cells, the book deals with production, utilization, storage and safety, and addresses the application of fuel cells in the road, rail, maritime and aviation sectors. For each sector, the book discusses the fundamentals of fuel cells, the current technical, environmental, safety, and economic performance, the main barriers to implementation and how to address themThis book is an invaluable reference for researchers, graduate students and industry engineers across the fuel cells and transportation sector, but is also ideal for policymakers involved in the energy transition. - Offers the first account of hydrogen fuel cell systems that considers every sector: road, rail, maritime and aviation - Focuses on the practical utilization and implementation of hydrogen fuel cells in transportation systems - Summarizes the latest research and developments in hydrogen fuel cell powered transportation |
fundamentals of hydrogen safety engineering: Hydrogen Science and Engineering, 2 Volume Set Detlef Stolten, Bernd Emonts, 2016-03-21 Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies. |
fundamentals of hydrogen safety engineering: Science and Engineering of Hydrogen-Based Energy Technologies Paulo Emilio Miranda, 2018-11-12 Science and Engineering of Hydrogen-Based Energy Technologies explores the generation of energy using hydrogen and hydrogen-rich fuels in fuel cells from the perspective of its integration into renewable energy systems using the most sound and current scientific knowledge. The book first examines the evolution of energy utilization and the role expected to be played by hydrogen energy technologies in the world's energy mix, not just for energy generation, but also for carbon capture, storage and utilization. It provides a general overview of the most common and promising types of fuel cells, such as PEMFCs, SOFCs and direct alcohol fuel cells. The co-production of chemical and electrolysis cells, as well as the available and future materials for fuel cells production are discussed. It then delves into the production of hydrogen from biomass, including waste materials, and from excess electricity produced by other renewable energy sources, such as solar, wind, hydro and geothermal. The main technological approaches to hydrogen storage are presented, along with several possible hydrogen energy engineering applications. Science and Engineering of Hydrogen-Based Energy Technologies's unique approach to hydrogen energy systems makes it useful for energy engineering researchers, professionals and graduate students in this field. Policy makers, energy planning and management professionals, and energy analysts can also benefit from the comprehensive overview that it provides. - Presents engineering fundamentals, commercially deployed technologies, up-and-coming developments and applications through a systemic approach - Explores the integration of hydrogen technologies in renewable energy systems, including solar, wind, bioenergy and ocean energy - Covers engineering standards, guidelines and regulations, as well as policy and social aspects for large-scale deployment of these technologies |
fundamentals of hydrogen safety engineering: Hydrogen Fuel Ram B. Gupta, 2008-07-30 From Methane to Hydrogen-Making the Switch to a Cleaner Fuel Source The world's overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next grea |
fundamentals of hydrogen safety engineering: Hydrogen Energy Lalit Mohan Das, 2024-03-04 HYDROGEN ENERGY Comprehensive resource exploring integrated hydrogen technology with guidance for developing practical operating systems Hydrogen Energy presents all-inclusive knowledge on hydrogen production and storage to enable readers to design guidelines for its production, storage, and applications, addressing the recent renewed interest in hydrogen energy to manage the global energy crisis and discussing the electrochemical potential of hydrogen in transportation and fuel cells. Written by a highly qualified author, Hydrogen Energy explores sample topics such as: Essentials of hydrogen energy, such as its occurrence, physico-chemical properties, production, transmission, delivery, storage, and utilization Technology of hydrogen utilization in the land transport sector, such as automobiles, as well as other modes of transport, like marine and air Combustion characteristics and environmental pollution features, internal combustion engines, and fuel cells Guidelines to design prototype systems, covering their safety, hydrogen induced damages and life cycle analysis Providing in-depth coverage of the subject, Hydrogen Energy is an ideal resource for researchers and professionals working towards developing time-bound goal-oriented hydrogen-based programs in the chemical, automobile, power, and process engineering sectors. |
fundamentals of hydrogen safety engineering: Catalytic Recombination of Hydrogen and Oxygen J. V. Gaven, R. B. Bacastow, A. C. Herrington, 1955 |
fundamentals of hydrogen safety engineering: Introduction to Hydrogen Technology K. S. V. Santhanam, Roman J. Press, Massoud J. Miri, Alla V. Bailey, Gerald A. Takacs, 2017-09-19 Introduces the field of hydrogen technology and explains the basic chemistry underlying promising and innovative new technologies This new and completely updated edition of Introduction to Hydrogen Technology explains, at an introductory level, the scientific and technical aspects of hydrogen technology. It incorporates information on the latest developments and the current research in the field, including: new techniques for isolating and storing hydrogen, usage as a fuel for automobiles, residential power systems, mobile power systems, and space applications. Introduction to Hydrogen Technology, Second Edition features classroom-tested exercises and sample problems. It details new economical methods for isolating the pure hydrogen molecule. These less expensive methods help make hydrogen fuel a very viable alternative to petroleum-based energy. The book also adds a new chapter on hydrogen production and batteries. It also provides in-depth coverage of the many technical hurdles in hydrogen storage. The developments in fuel cells since the last edition has been updated. Offers new chapters on hydrogen production, storage, and batteries Features new sections on advanced hydrogen systems, new membranes, greenhouse gas sensors and updated technologies involving solar and wind energies Includes problems at the end of the Chapters, as well as solutions for adopters This book is an introduction to hydrogen technology for students who have taken at least one course in general chemistry and calculus; it will also be a resource book for scientists and researchers working in hydrogen-based technologies, as well as anyone interested in sustainable energy. |
fundamentals of hydrogen safety engineering: Fuel Cells and Hydrogen Viktor Hacker, Shigenori Mitsushima, 2018-07-20 Fuel Cells and Hydrogen: From Fundamentals to Applied Research provides an overview of the basic principles of fuel cell and hydrogen technology, which subsequently allows the reader to delve more deeply into applied research. In addition to covering the basic principles of fuel cells and hydrogen technologies, the book examines the principles and methods to develop and test fuel cells, the evaluation of the performance and lifetime of fuel cells and the concepts of hydrogen production. Fuel Cells and Hydrogen: From Fundamentals to Applied Research acts as an invaluable reference book for fuel cell developers and students, researchers in industry entering the area of fuel cells and lecturers teaching fuel cells and hydrogen technology. - Includes laboratory methods for fuel cell characterization and manufacture - Outlines approaches in modelling components, cells and stacks - Covers practical and theoretical methods for hydrogen production and storage |
fundamentals of hydrogen safety engineering: Sensors for Safety and Process Control in Hydrogen Technologies Thomas Hübert, Lois Boon-Brett, William Buttner, 2018-10-09 Understand, Select, and Design Sensors for Hydrogen-Based Applications The use of hydrogen generated from renewable energy sources is expected to become an essential component of a low-carbon, environmentally friendly energy supply, spurring the worldwide development of hydrogen technologies. Sensors for Safety and Process Control in Hydrogen Technologies provides practical, expert-driven information on modern sensors for hydrogen and other gases as well as physical parameters essential for safety and process control in hydrogen technologies. It illustrates how sensing technologies can ensure the safe and efficient implementation of the emerging global hydrogen market. The book explains the various facets of sensor technologies, including practical aspects relevant in hydrogen technologies. It presents a comprehensive and up-to-date account of the theory (physical and chemical principles), design, and implementations of sensors in hydrogen technologies. The authors also offer guidance on the development of new sensors based on the analysis of the capabilities and limitations of existing sensors with respect to current performance requirements. Suitable for both technical and non-technical personnel, the book provides a balance between detailed descriptions and simple explanations. It gives invaluable insight into the role sensors play as key enabling devices for both control and safety in established and emerging hydrogen technologies. |
fundamentals of hydrogen safety engineering: Risk-based Regulatory Design for the Safe Use of Hydrogen OECD, 2023-07-24 Low-emission hydrogen is expected to play an important role in the energy transition to tackle the climate crisis. It can decarbonate “hard-to-abate” sectors still relying on fossil fuels, turn low-carbon electricity into a fuel that can be transported using pipelines and provide a green transport alternative, in particular for heavy-duty and long-distance transport. |
fundamentals of hydrogen safety engineering: Utilization of Hydrogen for Sustainable Energy and Fuels Marcel Van de Voorde, 2021-09-07 Carbon neutral hydrogen technologies play a key-role in preventing climate change and hydrogen is really at the heart of the energy transition. As we can produce heat and power directly from hydrogen in a clean way, we will have many applications in the growing hydrogen economy. This book presents the current state and latest development trends of hydrogen economy with the focus on applications. It gives an overview of the hydrogen utilization as it relates to the transport technology, such as automobiles, heavy-duty vehicles, trains, ships, air, and space transport and industry. Large attention is given to structural and functional materials science, technologies and innovations with focus on the development of new materials and electrolytes for specific applications. Strictly related to mobility is the relation between vehicles and refuel stations, the safety analysis, risk assessment for both infrastructures and transport. Ideal book for students of materials science, chemistry, physics; for researchers and chemical- and mechanical engineers, for industrialists, policymakers, safety agencies and governments. |
fundamentals of hydrogen safety engineering: SFPE Handbook of Fire Protection Engineering Morgan J. Hurley, Daniel T. Gottuk, John R. Hall Jr., Kazunori Harada, Erica D. Kuligowski, Milosh Puchovsky, Jose ́ L. Torero, John M. Watts Jr., CHRISTOPHER J. WIECZOREK, 2015-10-07 Revised and significantly expanded, the fifth edition of this classic work offers both new and substantially updated information. As the definitive reference on fire protection engineering, this book provides thorough treatment of the current best practices in fire protection engineering and performance-based fire safety. Over 130 eminent fire engineers and researchers contributed chapters to the book, representing universities and professional organizations around the world. It remains the indispensible source for reliable coverage of fire safety engineering fundamentals, fire dynamics, hazard calculations, fire risk analysis, modeling and more. With seventeen new chapters and over 1,800 figures, the this new edition contains: Step-by-step equations that explain engineering calculations Comprehensive revision of the coverage of human behavior in fire, including several new chapters on egress system design, occupant evacuation scenarios, combustion toxicity and data for human behavior analysis Revised fundamental chapters for a stronger sense of context Added chapters on fire protection system selection and design, including selection of fire safety systems, system activation and controls and CO2 extinguishing systems Recent advances in fire resistance design Addition of new chapters on industrial fire protection, including vapor clouds, effects of thermal radiation on people, BLEVEs, dust explosions and gas and vapor explosions New chapters on fire load density, curtain walls, wildland fires and vehicle tunnels Essential reference appendices on conversion factors, thermophysical property data, fuel properties and combustion data, configuration factors and piping properties “Three-volume set; not available separately” |
fundamentals of hydrogen safety engineering: Fuel Cell Engines Matthew M. Mench, 2008-03-07 Fuel Cell Engines is an introduction to the fundamental principles of electrochemistry, thermodynamics, kinetics, material science and transport applied specifically to fuel cells. It covers scientific fundamentals and provides a basic understanding that enables proper technical decision-making. |
fundamentals of hydrogen safety engineering: Electrochemical Power Sources: Fundamentals, Systems, and Applications Tom Smolinka, Jürgen Garche, 2021-10-25 Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis offers a comprehensive overview about different hydrogen production technologies, including their technical features, development stage, recent advances, and technical and economic issues of system integration. Allied processes such as regenerative fuel cells and sea water electrolysis are also covered. For many years hydrogen production by water electrolysis was of minor importance, but research and development in the field has increased significantly in recent years, and a comprehensive overview is missing. This book bridges this gap and provides a general reference to the topic.Hydrogen production by water electrolysis is the main technology to integrate high shares of electricity from renewable energy sources and balance out the supply and demand match in the energy system. Different electrochemical approaches exist to produce hydrogen from RES (Renewable Energy Sources). - Covers the fundamentals of hydrogen production by water electrolysis - Reviews all relevant technologies comprehensively - Outlines important technical and economic issues of system integration - Includes commercial examples and demonstrates electrolyzer projects |
fundamentals of hydrogen safety engineering: Guidelines for Integrating Process Safety into Engineering Projects CCPS (Center for Chemical Process Safety), 2018-12-11 There is much industry guidance on implementing engineering projects and a similar amount of guidance on Process Safety Management (PSM). However, there is a gap in transferring the key deliverables from the engineering group to the operations group, where PSM is implemented. This book provides the engineering and process safety deliverables for each project phase along with the impacts to the project budget, timeline and the safety and operability of the delivered equipment. |
fundamentals of hydrogen safety engineering: Process Safety in Upstream Oil and Gas CCPS (Center for Chemical Process Safety), 2021-04-13 The book makes the case for process safety and provides a brief overviews of the upstream industry and of CCPS Risk Based Process Safety. The majority of the book focuses on the concepts of implementing process safety in wells, onshore, offshore, and projects. Topics include Overview of Upstream Operations; Overview of Risk Based Process Safety (RBPS); Application of RBPS in Drilling, Completions, Work-Overs & Interventions, Application of RBPS in Onshore Production, Application of RBPS in Offshore Production, Application of RBPS to Engineering Design, Installation, and Construction, Future Developments in the Field |
fundamentals of hydrogen safety engineering: Fundamentals of Process Safety Engineering Samarendra Kumar Biswas, Umesh Mathur, Swapan Kumar Hazra, 2021-08-16 This textbook covers the essential aspects of process safety engineering in a practical and comprehensive manner. It provides readers with an understanding of process safety hazards in the refining and petrochemical industries and how to manage them in a reliable and professional manner. It covers the most important concepts: static electricity, intensity of thermal radiation, thermodynamics of fluid phase equilibria, boiling liquid expanding vapor explosion (BLEVE), emission source models, hazard identification methods, risk control and methods for achieving manufacturing excellence while also focusing on safety. Extensive case studies are included. Aimed at senior undergraduate and graduate chemical engineering students and practicing engineers, this book covers process safety principles and engineering practice authoritatively, with comprehensive examples: • Fundamentals, methods, and procedures for the industrial practice of process safety engineering. • The thermodynamic fundamentals and computational methods for release rates from ruptures in pipelines, vessels, and relief valves. • Fundamentals of static electricity hazards and their mitigation. • Quantitative assessment of fires and explosions. • Principles of dispersion calculations for toxic or flammable gases and vapors. • Methods of qualitative and quantitative risk assessment and control. |
fundamentals of hydrogen safety engineering: Hydrogen and Fuel Cells Bent Sørensen, 2011-11-14 A hydrogen economy, in which this one gas provides the source of all energy needs, is often touted as the long-term solution to the environmental and security problems associated with fossil fuels. However, before hydrogen can be used as fuel on a global scale we must establish cost effective means of producing, storing, and distributing the gas, develop cost efficient technologies for converting hydrogen to electricity (e.g. fuel cells), and creating the infrastructure to support all this. Sorensen is the only text available that provides up to date coverage of all these issues at a level appropriate for the technical reader. The book not only describes the how and where aspects of hydrogen fuels cells usage, but also the obstacles and benefits of its use, as well as the social implications (both economically and environmental). Written by a world-renowned researcher in energy systems, this thoroughly illustrated and cross-referenced book is an excellent reference for researchers, professionals and students in the field of renewable energy. Updated sections on PEM fuel cells, Molten carbonate cells, Solid Oxide cells and Biofuel cells Updated material to reflect the growing commercial acceptance of stationary and portable fuel cell systems, while also recognizing the ongoing research in automotive fuel cell systems A new example of a regional system based on renewable energy sources reflects the growing international attention to uses of renewable energy as part of the energy grid Examples of life cycle analysis of environmental and social impacts |
fundamentals of hydrogen safety engineering: Introduction to Process Safety for Undergraduates and Engineers CCPS (Center for Chemical Process Safety), 2016-06-27 Familiarizes the student or an engineer new to process safety with the concept of process safety management Serves as a comprehensive reference for Process Safety topics for student chemical engineers and newly graduate engineers Acts as a reference material for either a stand-alone process safety course or as supplemental materials for existing curricula Includes the evaluation of SACHE courses for application of process safety principles throughout the standard Ch.E. curricula in addition to, or as an alternative to, adding a new specific process safety course Gives examples of process safety in design |
fundamentals of hydrogen safety engineering: Fuel Cell Fundamentals Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz, 2016-05-02 A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions and mathematical problems reinforce the material learned. Fuel cells produce more electricity than batteries or combustion engines, with far fewer emissions. This book is the essential introduction to the technology that makes this possible, and the physical processes behind this cost-saving and environmentally friendly energy source. Understand the basic principles of fuel cell physics Compare the applications, performance, and costs of different systems Master the calculations associated with the latest fuel cell technology Learn the considerations involved in system selection and design As more and more nations turn to fuel cell commercialization amidst advancing technology and dropping deployment costs, global stationary fuel cell revenue is expected to grow from $1.4 billion to $40.0 billion by 2022. The sector is forecasted to explode, and there will be a tremendous demand for high-level qualified workers with advanced skills and knowledge of fuel cell technology. Fuel Cell Fundamentals is the essential first step toward joining the new energy revolution. |
fundamentals of hydrogen safety engineering: Fundamentals of Solid State Engineering Manijeh Razeghi, 2006-06-12 Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics |
fundamentals of hydrogen safety engineering: Bow Ties in Risk Management CCPS (Center for Chemical Process Safety), 2018-10-09 AN AUTHORITATIVE GUIDE THAT EXPLAINS THE EFFECTIVENESS AND IMPLEMENTATION OF BOW TIE ANALYSIS, A QUALITATIVE RISK ASSESSMENT AND BARRIER MANAGEMENT METHODOLOGY From a collaborative effort of the Center for Chemical Process Safety (CCPS) and the Energy Institute (EI) comes an invaluable book that puts the focus on a specific qualitative risk management methodology – bow tie barrier analysis. The book contains practical advice for conducting an effective bow tie analysis and offers guidance for creating bow tie diagrams for process safety and risk management. Bow Ties in Risk Management clearly shows how bow tie analysis and diagrams fit into an overall process safety and risk management framework. Implementing the methods outlined in this book will improve the quality of bow tie analysis and bow tie diagrams across an organization and the industry. This important guide: Explains the proven concept of bow tie barrier analysis for the preventing and mitigation of incident pathways, especially related to major accidents Shows how to avoid common pitfalls and is filled with real-world examples Explains the practical application of the bow tie method throughout an organization Reveals how to treat human and organizational factors in a sound and practical manner Includes additional material available online Although this book is written primarily for anyone involved with or responsible for managing process safety risks, this book is applicable to anyone using bow tie risk management practices in other safety and environmental or Enterprise Risk Management applications. It is designed for a wide audience, from beginners with little to no background in barrier management, to experienced professionals who may already be familiar with bow ties, their elements, the methodology, and their relation to risk management. The missions of both the CCPS and EI include developing and disseminating knowledge, skills, and good practices to protect people, property and the environment by bringing the best knowledge and practices to industry, academia, governments and the public around the world through collective wisdom, tools, training and expertise. The CCPS has been at the forefront of documenting and sharing important process safety risk assessment methodologies for more than 30 years. The EI's Technical Work Program addresses the depth and breadth of the energy sector, from fuels and fuels distribution to health and safety, sustainability and the environment. The EI program provides cost-effective, value-adding knowledge on key current and future international issues affecting those in the energy sector. |
fundamentals of hydrogen safety engineering: Guidelines for Risk Based Process Safety CCPS (Center for Chemical Process Safety), 2011-11-30 Guidelines for Risk Based Process Safety provides guidelines for industries that manufacture, consume, or handle chemicals, by focusing on new ways to design, correct, or improve process safety management practices. This new framework for thinking about process safety builds upon the original process safety management ideas published in the early 1990s, integrates industry lessons learned over the intervening years, utilizes applicable total quality principles (i.e., plan, do, check, act), and organizes it in a way that will be useful to all organizations - even those with relatively lower hazard activities - throughout the life-cycle of a company. |
fundamentals of hydrogen safety engineering: Aircraft Cryogenics Ernst Wolfgang Stautner, |
fundamentals of hydrogen safety engineering: Guidelines for Inherently Safer Chemical Processes CCPS (Center for Chemical Process Safety), 2019-10-16 Since the publication of the second edition several United States jurisdictions have mandated consideration of inherently safer design for certain facilities. Notable examples are the inherently safer technology (IST) review requirement in the New Jersey Toxic Chemical Prevention Act (TCPA), and the Inherently Safer Systems Analysis (ISSA) required by the Contra Costa County (California) Industrial Safety Ordinance. More recently, similar requirements have been proposed at the U.S. Federal level in the pending EPA Risk Management Plan (RMP) revisions. Since the concept of inherently safer design applies globally, with its origins in the United Kingdom, the book will apply globally. The new edition builds on the same philosophy as the first two editions, but further clarifies the concept with recent research, practitioner observations, added examples and industry methods, and discussions of security and regulatory issues. Inherently Safer Chemical Processes presents a holistic approach to making the development, manufacture, and use of chemicals safer. The main goal of this book is to help guide the future state of chemical process evolution by illustrating and emphasizing the merits of integrating inherently safer design process-related research, development, and design into a comprehensive process that balances safety, capital, and environmental concerns throughout the life cycle of the process. It discusses strategies of how to: substitute more benign chemicals at the development stage, minimize risk in the transportation of chemicals, use safer processing methods at the manufacturing stage, and decommission a manufacturing plant so that what is left behind does not endanger the public or environment. |
fundamentals of hydrogen safety engineering: Hydrogen and Fuel Cells Detlef Stolten, 2010-08-30 Authored by 40 of the most prominent and renowned international scientists from academia, industry, institutions and government, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it includes how hydrogen can be safely produced, stored, transported and utilized, while also covering such broader topics as the environmental impact, education and regulatory developments. |
fundamentals of hydrogen safety engineering: Understanding Explosions Daniel A. Crowl, 2010-08-13 There are many different types of explosions, each with its own complex mechanism. Understanding explosions is important in preventing them. This reference provides valuable information on explosions for everyone involved in the operation, design, maintenance, and management of chemical processes, helping enhance understanding of the nature of explosions and the practical methods required to prevent them from occurring. The text includes: Fundamental basis for explosions Explosive and flammable behavior and characteristics of materials Different types of explosions Fire and explosion hazard recognition Practical methods for preventing explosions or minimizing the potential consequences Additional references Understanding Explosions provides a practical understanding of explosion fundamentals, including the different types of explosions, the explosive and flammable behavior of materials, and the hazards related to fires and explosions. It also discusses practical methods to prevent and minimize the probability and consequence of an explosion during routine use of flammable, combustible and/or reactive materials. |
fundamentals of hydrogen safety engineering: Fundamentals of Combustion Processes Sara McAllister, Jyh-Yuan Chen, A. Carlos Fernandez-Pello, 2011-05-10 Fundamentals of Combustion Processes is designed as a textbook for an upper-division undergraduate and graduate level combustion course in mechanical engineering. The authors focus on the fundamental theory of combustion and provide a simplified discussion of basic combustion parameters and processes such as thermodynamics, chemical kinetics, ignition, diffusion and pre-mixed flames. The text includes exploration of applications, example exercises, suggested homework problems and videos of laboratory demonstrations |
fundamentals of hydrogen safety engineering: Proceedings of the 10th Hydrogen Technology Convention, Volume 2 Hexu Sun, Wei Pei, Yan Dong, Hongmei Yu, Shi You, 2024-01-04 This book highlights the latest advances in fundamental research, technologies and applications of hydrogen energy and fuel cells. In recent years, energy conversion between electricity and hydrogen energy has attracted increasing attention as a way to adjust the load of the grid. This book discusses and exchanges cutting-edge findings and technological developments in fields such as new proton exchange membrane electrolyzers, new electrode materials and catalysts, renewable energy, off-grid/grid-connected water electrolysis for hydrogen production, key materials and components of fuel cells, high-temperature solid oxide water electrolysis, energy storage technologies and research, CO2 hydrogenation to methanol, nitrogen to ammonia and other applications with industrial potential. The main topics of the proceedings include: 1) Policies and strategies for hydrogen energy and fuel cells; 2) Advanced proton exchange membranes, electrodes and catalyst materials for water electrolysis; 3) Advanced hydrogen compression, storage, transportation and distribution technologies; 4) Safety and related standards; 5) Manufacture and R&D of key materials and components of fuel cells and stack systems. |
fundamentals of hydrogen safety engineering: Hydrogen and Syngas Production and Purification Technologies Ke Liu, Chunshan Song, Velu Subramani, 2009-11-19 Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems |
fundamentals of hydrogen safety engineering: Fire Modelling G. Cox, 2004 This Digest explains the methodologies being used for the computer simulation of fire. It focuses on models of the fire itself: the essentially gas phase phenomenon at the heart of any fire simulation. Numerical modelling has become increasingly attractive for those wishing to fully exploit the freedoms to achieve safe, cost effective design offered by performance based regulation. This new edition of Digest 367 supersedes the version published in 1991. It explains fire growth and spread, and the two basic types of computer simulation methodologies. These are the zonal models, and the more universal field models that use the specialist discipline of computational fluid dynamics. Two types of field model are described which employ alternative approaches using Reynolds Averaged and Large Eddy methodologies to capture the influences of turbulence. An example shows the BRE CRISP model applied to the problem of smoke spread through a two storey theatre and the evacuation of the occupants. |
fundamentals of hydrogen safety engineering: Hydrogen Technology Aline Léon, 2008-07-18 Aline Leon ́ In the last years, public attention was increasingly shifted by the media and world governmentsto the conceptsof saving energy,reducingpollution,protectingthe - vironment, and developing long-term energy supply solutions. In parallel, research funding relating to alternative fuels and energy carriers is increasing on both - tional and international levels. Why has future energy supply become such a matter of concern? The reasons are the problems created by the world’s current energy supply s- tem which is mainly based on fossil fuels. In fact, the energystored in hydrocarb- based solid, liquid, and gaseous fuels was, is, and will be widely consumed for internal combustion engine-based transportation, for electricity and heat generation in residential and industrial sectors, and for the production of fertilizers in agric- ture, as it is convenient, abundant, and cheap. However, such a widespread use of fossil fuels by a constantly growing world population (from 2. 3 billion in 1939 to 6. 5 billion in 2006) gives rise to the two problems of oil supply and environmental degradation. The problemrelated to oil supply is caused by the fact that fossil fuels are not - newable primary energy sources: This means that since the rst barrel of petroleum has been pumped out from the ground, we have been exhausting a heritage given by nature. |
fundamentals of hydrogen safety engineering: Guidelines for the Management of Change for Process Safety CCPS (Center for Chemical Process Safety), 2011-09-20 Guidelines for the Management of Change for Process Safety provides guidance on the implementation of effective and efficient Management of Change (MOC) procedures, which can be applied to improve process safety. In addition to introducing MOC systems, the book describes how to design an initial system from scratch, including the scope of the system and the applications over a plant life cycle and the boundaries and overlaps with other process safety management systems. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file. |
fundamentals of hydrogen safety engineering: Fuel Cells Supramaniam Srinivasan, 2006-05-05 This concise sourcebook of the electrochemical, engineering and economic principles involved in the development and commercialization of fuel cells offers a thorough review of applications and techno-economic assessment of fuel cell technologies, plus in-depth discussion of conventional and novel approaches for generating energy. Parts I and II explain basic and applied electrochemistry relevant to an understanding of fuel cells. Part III covers engineering and technology aspects. The book is useful for undergraduate and graduate students and scientists interested in fuel cells. Unlike any other current book on fuel cells, each chapter includes problems based on the discussions in the text. |
fundamentals of hydrogen safety engineering: Natural Gas Engineering and Safety Challenges G.G. Nasr, N.E. Connor, 2014-08-02 Providing a critical and extensive compilation of the downstream processes of natural gas that involve the principle of gas processing , transmission and distribution, gas flow and network analysis, instrumentation and measurement systems and its utilisation, this book also serves to enrich readers understanding of the business and management aspects of natural gas and highlights some of the recent research and innovations in the field. Featuring extensive coverage of the design and pipeline failures and safety challenges in terms of fire and explosions relating to the downstream of natural gas technology, the book covers the needs of practising engineers from different disciplines, who may include project and operations managers, planning and design engineers as well as undergraduate and postgraduate students in the field of gas, petroleum and chemical engineering. This book also includes several case studies to illustrate the analysis of the downstream process in the gas and oil industry. Of interest to researchers is the field of flame and mitigation of explosion: the fundamental processes involved are also discussed, including outlines of contemporary and possible future research and challenges in the different fields. |
fundamentals of hydrogen safety engineering: Safety Engineering , 1920 |
fundamentals of hydrogen safety engineering: Solar Hydrogen Production Francesco Calise, Massimo Dentice D'Accadia, Massimo Santarelli, Andrea Lanzini, Domenico Ferrero, 2019-08-15 Solar Hydrogen Production: Processes, Systems and Technologies presents the most recent developments in solar-driven hydrogen generation methods. The book covers different hydrogen production routes, from renewable sources, to solar harvesting technologies. Sections focus on solar energy, presenting the main thermal and electrical technologies suitable for possible integration into solar-based hydrogen production systems and present a thorough examination of solar hydrogen technologies, ranging from solar-driven water electrolysis and solar thermal methods, to photo-catalytic and biological processes. All hydrogen-based technologies are covered, including data regarding the state-of-the art of each process in terms of costs, efficiency, measured parameters, experimental analyses, and demonstration projects. In the last part of the book, the role of hydrogen in the integration of renewable sources in electric grids, transportation sector, and end-user applications is assessed, considering their current status and future perspectives. The book includes performance data, tables, models and references to available standards. It is thus a key-resource for engineering researchers and scientists, in both academic and industrial contexts, involved in designing, planning and developing solar hydrogen systems. - Offers a comprehensive overview of conventional and advanced solar hydrogen technologies, including simulation models, cost figures, R&D projects, demonstration projects, test standards, and safety and handling issues - Encompasses, in a single volume, information on solar energy and hydrogen systems - Includes detailed economic data on each technology for feasibility assessment of different systems |
FUNDAMENTAL Definition & Meaning - Merriam-Webster
The meaning of FUNDAMENTAL is serving as a basis supporting existence or determining essential structure or function : basic. How to use fundamental in a sentence. Synonym …
FUNDAMENTALS | English meaning - Cambridge Dictionary
The fundamentals include modularity, anticipation of change, generality and an incremental approach.
FUNDAMENTALS definition and meaning | Collins English …
The fundamentals of something are its simplest, most important elements, ideas, or principles, in contrast to more complicated or detailed ones.
FUNDAMENTAL Definition & Meaning | Dictionary.com
noun a basic principle, rule, law, or the like, that serves as the groundwork of a system; essential part. to master the fundamentals of a trade.
Fundamentals - definition of fundamentals by The Free Dictionary
Fundamentals (See also ESSENCE.) down to bedrock Down to basics or fundamentals; down to the essentials. Bedrock is literally a hard, solid layer of rock underlying the upper strata of soil …
fundamental - Wiktionary, the free dictionary
May 17, 2025 · fundamental (plural fundamentals) (generic, singular) A basic truth, elementary concept, principle, rule, or law. An individual fundamental will often serve as a building block …
FUNDAMENTALS definition | Cambridge English Dictionary
fundamentals of It's important for children to be taught the fundamentals of science. Share prices have risen across Asia as fundamentals improve. Global uncertainty is unlikely to become …
Fundamental - Definition, Meaning & Synonyms
Fundamental has its roots in the Latin word fundamentum, which means "foundation." So if something is fundamental, it is a key point or underlying issue — the foundation, if you will — …
FUNDAMENTAL | English meaning - Cambridge Dictionary
fundamental principle The school is based on the fundamental principle that all children should reach their full potential. of fundamental importance Diversity is of fundamental importance to …
Fundamentals - Definition, Meaning & Synonyms
Definitions of fundamentals noun principles from which other truths can be derived “first you must learn the fundamentals ” synonyms: basic principle, basics, bedrock, fundamental principle …
FUNDAMENTAL Definition & Meaning - Merriam-Webster
The meaning of FUNDAMENTAL is serving as a basis supporting existence or determining essential structure or function : basic. How to use fundamental in a sentence. Synonym …
FUNDAMENTALS | English meaning - Cambridge Dictionary
The fundamentals include modularity, anticipation of change, generality and an incremental approach.
FUNDAMENTALS definition and meaning | Collins English …
The fundamentals of something are its simplest, most important elements, ideas, or principles, in contrast to more complicated or detailed ones.
FUNDAMENTAL Definition & Meaning | Dictionary.com
noun a basic principle, rule, law, or the like, that serves as the groundwork of a system; essential part. to master the fundamentals of a trade.
Fundamentals - definition of fundamentals by The Free Dictionary
Fundamentals (See also ESSENCE.) down to bedrock Down to basics or fundamentals; down to the essentials. Bedrock is literally a hard, solid layer of rock underlying the upper strata of soil …
fundamental - Wiktionary, the free dictionary
May 17, 2025 · fundamental (plural fundamentals) (generic, singular) A basic truth, elementary concept, principle, rule, or law. An individual fundamental will often serve as a building block …
FUNDAMENTALS definition | Cambridge English Dictionary
fundamentals of It's important for children to be taught the fundamentals of science. Share prices have risen across Asia as fundamentals improve. Global uncertainty is unlikely to become …
Fundamental - Definition, Meaning & Synonyms
Fundamental has its roots in the Latin word fundamentum, which means "foundation." So if something is fundamental, it is a key point or underlying issue — the foundation, if you will — …
FUNDAMENTAL | English meaning - Cambridge Dictionary
fundamental principle The school is based on the fundamental principle that all children should reach their full potential. of fundamental importance Diversity is of fundamental importance to …
Fundamentals - Definition, Meaning & Synonyms
Definitions of fundamentals noun principles from which other truths can be derived “first you must learn the fundamentals ” synonyms: basic principle, basics, bedrock, fundamental principle …